The plant toxin ricin and the bacterial toxin Shiga toxin belong to a group of protein toxins that inhibit protein synthesis in cells enzymatically after entry into the cytosol. Ricin and Shiga toxin, which both have an enzymatically active moiety that inactivates ribosomes and a moiety that binds to cell surface receptors, enter the cytosol after binding to the cell surface, endocytosis by different mechanisms, and retrograde transport to the Golgi apparatus and the endoplasmic reticulum (ER). The toxins can be used to investigate the various transport steps involved, both the endocytic mechanisms as well as pathways for retrograde transport to the ER. Recent studies show that not only do several endocytic mechanisms exist in the same cell, but they are not equally sensitive to removal of cholesterol. New data have revealed that there is also more than one pathway leading from endosomes to the Golgi apparatus and retrogradely from the Golgi to the ER. Trafficking of protein toxins along these pathways will be discussed in the present article.
The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.
We have here studied the role of cholesterol in transport of ricin from endosomes to the Golgi apparatus. Ricin is endocytosed even when cells are depleted for cholesterol by using methyl-β-cyclodextrin (mβCD). However, as here shown, the intracellular transport of ricin from endosomes to the Golgi apparatus, measured by quantifying sulfation of a modified ricin molecule, is strongly inhibited when the cholesterol content of the cell is reduced. On the other hand, increasing the level of cholesterol by treating cells with mβCD saturated with cholesterol (mβCD/chol) reduced the intracellular transport of ricin to the Golgi apparatus even more strongly. The intracellular transport routes affected include both Rab9-independent and Rab9-dependent pathways to the Golgi apparatus, since both sulfation of ricin after induced expression of mutant Rab9 (mRab9) to inhibit late endosome to Golgi transport and sulfation of a modified mannose 6-phosphate receptor (M6PR) were inhibited after removal or addition of cholesterol. Furthermore, the structure of the Golgi apparatus was affected by increased levels of cholesterol, as visualized by pronounced vesiculation and formation of smaller stacks. Thus, our results indicate that transport of ricin from endosomes to the Golgi apparatus is influenced by the cholesterol content of the cell.
Annexin A2 is a multifunctional Ca(2+)- and lipid-binding protein. We previously showed that a distinct pool of cellular Annexin A2 associates with mRNP complexes or polysomes associated with the cytoskeleton. Here we report in vitro and in vivo experiments showing that Annexin A2 present in this subset of mRNP complexes interacts with its cognate mRNA and c-myc mRNA, but not with beta(2)-microglobulin mRNA translated on membrane-bound polysomes. The protein recognises sequence elements within the untranslated regions, but not within the coding region, of its cognate mRNA. Alignment of the Annexin A2-binding 3'-untranslated regions of annexin A2 mRNA from several species reveals a five nucleotide consensus sequence 5'-AA(C/G)(A/U)G. The Annexin A2-interacting region of the 3'-untranslated region can be mapped to a sequence of about 100 nucleotides containing two repeats of the consensus sequence. The binding elements appear to involve both single and double stranded regions, indicating that a specific higher order mRNA structure is required for binding to Annexin A2. We suggest that this type of interaction is representative for a group of mRNAs translated on cytoskeleton-bound polysomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.