Perceptually similar stimuli, despite not being consciously distinguishable, may result in distinct cortical brain activations. Hypothesizing that perceptually similar tastes are discriminable by electroencephalography (EEG), we recorded 22 human participants' response to equally intense sweet-tasting stimuli: caloric sucrose, low-caloric aspartame, and a low-caloric mixture of aspartame and acesulfame K. Time-resolved multivariate pattern analysis of the 128-channel EEG was used to discriminate the taste responses at single-trial level. Supplementing the EEG study, we also performed a behavioral study to assess the participants' perceptual ability to discriminate the taste stimuli by a triangle test of all three taste pair combinations. The three taste stimuli were found to be perceptually similar or identical in the behavioral study, yet discriminable from 0.08 to 0.18 s by EEG analysis. Comparing the participants' responses in the EEG and behavioral study, we found that brain responses to perceptually similar tastes are discriminable, and we also found evidence suggesting that perceptually identical tastes are discriminable by the brain. Moreover, discriminability of brain responses was related to individual participants' perceptual ability to discriminate the tastes. We did not observe a relation between brain response discriminability and calorie content of the taste stimuli. Thus, besides demonstrating discriminability of perceptually similar and identical tastes with EEG, we also provide the first proof of a functional relation between brain response and perception of taste stimuli at individual level.
We sense fat by its texture and smell, but it is still unknown whether we also taste fat despite evidence of both candidate receptors and distinct fat taste sensations. One major reason fat is still not recognized as a basic taste quality is that we first need to demonstrate its underlying neural activity. To investigate such neural fat taste activation, we recorded evoked responses to commercial cow milk products with 0.1%, 4%, and 38 % fat via high-density electroencephalography (EEG) from 24 human participants. The experimental design ensured that the products would only be discriminable via their potential fat taste; all stimuli were carefully controlled for differences in viscosity, lubrication, odor, temperature, and confounding tastes (sweetness, acidity, and “off-taste”) and were delivered directly onto the tongue using a set of computer-controlled syringe pumps. Advanced topographical pattern analysis revealed different neural activation to the milk products 85–134 ms after stimulus onset, which, as expected, best discriminated the two milk fat extremes (0.1% and 38% fat). Notably, this time period has previously been shown to also encode basic taste qualities, such as sweet or salty. By adding to the evidence of cortical fat taste processing in response to staple food, our finding not only substantiates that we taste fat but also highlights its potential relevance during our everyday lives with possible large-scale impacts on motivational eating behavior to explain overconsumption of energy-dense foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.