Abstract. In line with current "green" transport initiatives, Croatia plans to build over the next investment period a high speed railway line which will connect central Croatia and its capital with coastal regions of the country. According to design documents, the track system will be built using ballastless concrete solutions. In the scope of the project "Concrete track system -ECOTRACK", researchers from the University of Zagreb -Faculty of Civil Engineering analysed a new material, i.e. the rubberized hybrid fibre reinforced concrete (RHFRC), in order to find out whether its properties are adequate for the proposed concrete track system. The RHFRC contains by-products from mechanical recycling of waste tyres (rubber and steel fibres). The study of fibre and rubber interaction and their contribution to mechanical properties of the fibre reinforced concrete is presented, as extensive research on positive interaction between industrial and recycled steel fibres has not as yet been made. The results show that the RHFRC is an innovative, sustainable and cost-effective concrete, which is fully compliant with criteria prescribed in relevant standards.Keywords: fibre reinforced concrete, industrial steel fibres, recycled steel fibres, mechanical properties, recycled rubber, waste tyre.
Tram track system management is a complex, costly and interdisciplinary process. It involves construction, monitoring and maintenance of track infrastructure and rolling stock, and public transport organization. Track management cost reduction requires development of a modern management system that is based on integration and mutual complementarity of engineering and maintenance activities. The first step of its establishment is increasing the proportion of planned predictive-preventive track maintenance at the expense of corrective maintenance. This requires creation of a maintenance-planning model. Its basic prerequisite is the development of a mathematical model of tram track degradation during exploitation. The research presented in this paper describes the creation of mechanisticempirical models for tram tracks (narrow) gauge degradation by adopting the modelling methodology used on the classic railway constructions. Two types of tram tracks are observed: tracks with indirect elastic rail fastening system and stiffer direct elastic rail fastening system. These models represent the first step towards establishing a predictive maintenance system on Zagreb tram tracks.
Track gauge is the most significant tram track geometry parameter. Its degradation, which manifests as gradual increase of gauge deviation from prescribed values during track exploitation, causes poor ride quality, reduces safety and triggers most of the maintenance activities. To optimize tram track maintenance procedures, it is necessary to increase the proportion of preventive maintenance at the expense of corrective maintenance. This requires creation of physical model of track degradation. Conducted survey of conventional track degradation models showed that, in order to quantify the influence of track design, construction and exploitation characteristics on gauge degradation, it is most favourable to adopt the mechanistic-empirical modelling approach. Zagreb high-capacity tram network presents an optimal testing ground for exploration of the possibilities for tram track gauge degradation model development. Analysis of modelling results gave new, practical insights about the effects of tram track design and construction elements and exploitation characteristics on gauge degradation. These models represent the first step towards predictive maintenance system establishment on Zagreb tram tracks.
Tram system is a backbone of public transportation in the City of Zagreb. In the last decade, its fleet has been renewed by 142 new low-floor trams. Shortly after their introduction, it was observed that they have a negative impact on the exploitation behavior of tram infrastructure, primarily on the durability of rail fastening systems. Because of that, it was decided to modify existing rail fastening systems to the new track exploitation conditions. When the (re)construction of tram infrastructure is carried out by applying new systems and technologies, it is necessary to take into account their impact on the future propagation of noise and vibration in the environment. This paper gives a short overview of the characteristics of the two newly developed rail fastening systems for Zagreb tram tracks, their application in construction of experimental track section, and performance and comparison of noise and vibration measurements results. Measured data on track vibrations and noise occurring during passage of the tram vehicles is analyzed in terms of track decay rates and equivalent noise levels of passing referent vehicle. Vibroacoustic performance of new fastening systems is evaluated and compared to referent fastening system, in order to investigate their ability to absorb vibration energy induced by tram operation and to reduce noise emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.