The debate concerning the mechanisms underlying the prehistoric spread of farming to Southeast Europe is framed around the opposing roles of population movement and cultural diffusion. To investigate the possible involvement of local people during the transition of agriculture in the Balkans, we analysed patterns of Y-chromosome diversity in 1206 subjects from 17 population samples, mainly from Southeast Europe. Evidence from three Y-chromosome lineages, I-M423, E-V13 and J-M241, make it possible to distinguish between Holocene Mesolithic forager and subsequent Neolithic range expansions from the eastern Sahara and the Near East, respectively. In particular, whereas the Balkan microsatellite variation associated to J-M241 correlates with the Neolithic period, those related to E-V13 and I-M423 Balkan Y chromosomes are consistent with a late Mesolithic time frame. In addition, the low frequency and variance associated to I-M423 and E-V13 in Anatolia and the Middle East, support an European Mesolithic origin of these two clades. Thus, these Balkan Mesolithic foragers with their own autochthonous genetic signatures, were destined to become the earliest to adopt farming, when it was subsequently introduced by a cadre of migrating farmers from the Near East. These initial local converted farmers became the principal agents spreading this economy using maritime leapfrog colonization strategies in the Adriatic and transmitting the Neolithic cultural package to other adjacent Mesolithic populations. The ensuing range expansions of E-V13 and I-M423 parallel in space and time the diffusion of Neolithic Impressed Ware, thereby supporting a case of cultural diffusion using genetic evidence.
SummaryThe variation at 28 Y-chromosome biallelic markers was analysed in 256 males (90 Croats, 81 Serbs and 85 Bosniacs) from Bosnia-Herzegovina. An important shared feature between the three ethnic groups is the high frequency of the "Palaeolithic" European-specific haplogroup (Hg) I, a likely signature of a Balkan population re-expansion after the Last Glacial Maximum. This haplogroup is almost completely represented by the sub-haplogroup I-P37 whose frequency is, however, higher in the Croats (∼ 71%) than in Bosniacs (∼ 44%) and Serbs (∼ 31%). Other rather frequent haplogroups are E (∼ 15%) and J (∼ 7%), which are considered to have arrived from the Middle East in Neolithic and post-Neolithic times, and R-M17 (∼ 14%), which probably marked several arrivals, at different times, from eastern Eurasia. Hg E, almost exclusively represented by its subclade E-M78, is more common in the Serbs (∼ 20%) than in Bosniacs (∼ 13%) and Croats (∼ 9%), and Hg J, observed in only one Croat, encompasses ∼ 9% of the Serbs and ∼ 12% of the Bosniacs, where it shows its highest diversification. By contrast, Hg R-M17 displays similar frequencies in all three groups. On the whole, the three main groups of Bosnia-Herzegovina, in spite of some quantitative differences, share a large fraction of the same ancient gene pool distinctive for the Balkan area.
Brain-derived neurotrophic factor (BDNF) has an important role in energy balance. It suppresses food intake, reduces hepatic glucose production and converts white fat into brown fat in adipose tissue, leading to energy dissipation, lowered blood glucose and a lean phenotype. Studies have shown that the single nucleotide polymorphism (SNP) Val66Met within BDNF may be associated with obesity, insulin sensitivity, type 2 diabetes mellitus (T2DM) and dyslipidemia. The objective of the study was to investigate the association of the Val66Met polymorphism with body mass index (BMI), fasting glucose levels and lipid profile in Serbian adolescents. The study included 308 randomly selected healthy adolescents, 153 (49.68%) boys and 155 girls (50.32%), 15 years of age. Data including age, gender, height, weight, lipid profile and fasting glucose were recorded. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. No association of this polymorphism was found with BMI and lipid profile. However, significant association was observed between this polymorphism and fasting blood glucose (FBG). Carriers of a Val/Val genotype had significantly higher mean values of fasting glucose level compared to carriers of Val/ Met and Met/Met genotypes (p = 0.01). To confirm these results multiple linear regression analysis was performed. Body mass index and gender were taken as covariates. Carriers of the Val/Val genotype had significantly higher levels of FBG (β = -0.152, p = 0.02). A statistically significant association between BMI and glucose level was also observed (β = 0.124,p = 0.033). This polymorphism could be associated with fasting glucose level in Serbian adolescents, thus further research would be of great interest to validate these results.
STR analysis of DNA extracted from skeletal samples can play an important role in the identification of missing persons. Here we present a method for the extraction of DNA from skeletal samples involving complete demineralization and digestion of the sample, followed by purification by silica binding. This method, together with the multiplex STR typing approach also presented, has proven highly successful in the recovery of DNA profiles from degraded, aged skeletal remains from a wide range of environmental contexts. The methodological steps presented include bone decontamination and grinding, DNA extraction, repurification in the case of highly inhibited samples, quantification, STR multiplex amplification, and profile reporting guidelines. However, the conditions applied for amplification and the criteria for allele calling and profile submission must be based on the results of each laboratory's internal validation experiments involving the type of samples relevant to the project at hand. The methods presented here have permitted large-scale DNA-based identification of persons missing from mass disasters and armed conflict.
The European Network of Forensic Science Institutes (ENFSI) recommended the establishment of forensic DNA databases and specific implementation and management legislations for all EU/ENFSI members. Therefore, forensic institutions from Bosnia and Herzegovina, Serbia, Montenegro, and Macedonia launched a wide set of activities to support these recommendations. To assess the current state, a regional expert team completed detailed screening and investigation of the existing forensic DNA data repositories and associated legislation in these countries. The scope also included relevant concurrent projects and a wide spectrum of different activities in relation to forensics DNA use. The state of forensic DNA analysis was also determined in the neighboring Slovenia and Croatia, which already have functional national DNA databases. There is a need for a ‘regional supplement’ to the current documentation and standards pertaining to forensic application of DNA databases, which should include regional-specific preliminary aims and recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.