The transverse structure of light is recognized as a resource that can be used to encode information onto photons and has been shown to be useful to enhance communication capacity as well as resolve point sources in superresolution imaging. The Laguerre-Gaussian (LG) modes form a complete and orthonormal basis set and are described by a radial index p and an orbital angular momentum (OAM) index . Earlier works have shown how to build a sorter for the radial index p or/and the OAM index of LG modes, but a scalable and dedicated LG mode sorter which simultaneous determinate p and is immature. Here we propose and experimentally demonstrate a scheme to accomplish complete LG mode sorting, which consists of a novel, robust radial mode sorter that can be used to couple radial modes to polarizations, an -dependent phase shifter and an OAM mode sorter. Our scheme is in principle efficient, scalable, and crosstalk-free, and therefore has potential for applications in optical communications, quantum information technology, superresolution imaging, and fiber optics.
The dimension of the state space for information encoding offered by the transverse structure of light is usually limited by the finite size of apertures. The widely used orbital angular momentum (OAM) number of Laguerre-Gaussian (LG) modes in free-space communications cannot achieve the theoretical maximum transmission capacity unless the radial degree of freedom is multiplexed into the protocol. While the methodology to sort the radial quantum number has been developed, the application of radial modes in quantum communications requires an additional ability to efficiently measure the superposition of LG modes in the mutually unbiased basis. Here we develop and implement a generic mode sorter that is capable of sorting the superposition of LG modes through the use of a mode converter. As a consequence, we demonstrate an 8-dimensional quantum key distribution experiment involving all three transverse degrees of freedom: spin, azimuthal, and radial quantum numbers of photons. Our protocol presents an important step towards the goal of reaching the capacity limit of a free-space link and can be useful to other applications that involve spatial modes of photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.