Metacercariae of trematodes belonging to the family Opecoelidae were collected from small fishes of the Great Barrier Reef: a blenniid, two gobiids, two labrids, three pomacentrids, a monacanthid, an ostraciid and the epaulette shark, Hemiscyllium ocellatum. Sequences of the second internal transcribed spacer region (ITS2) of ribosomal DNA were generated from these metacercariae in an attempt to match them with adult worms. Three species of Allopodocotyle (Allopodocotyle epinepheli, Allopodocotyle heronensis and an unidentified species), two unidentified species of Hamacreadium and Pacificreadium serrani were detected. Among the Opecoelidae, these species all resolve to a single, phylogenetically and somewhat morphologically distinct clade. Species of this clade are the only known marine opecoelids to exploit fishes as second-intermediate hosts. The clade is proposed to warrant a new subfamily, the Hamacreadiinae subfam. nov. It includes Allopodocotyle, Bentholebouria, Cainocreadium, Choanotrema, Hamacreadium, Pacificreadium, Paraplagioporus, Pedunculacetabulum and Podocotyloides.
Despite morphological and ecological inconsistencies among species, all plagioporine opecoelids with a pedunculate ventral sucker are currently considered to belong in the genus Podocotyloides Yamaguti, 1934. We revise the genus based on combined morphological and phylogenetic analyses of novel material collected from haemulid fishes in Queensland waters that we interpret to represent species congeneric with the type-species, Pod. petalophallus Yamaguti, 1934, also known from a haemulid, off Japan. Our phylogenetic analysis demonstrates polyphyly of Podocotyloides; prompts us to resurrect Pedunculacetabulum Yamaguti, 1934; and suggests that Pod. brevis Andres & Overstreet, 2013, from a deep-sea congrid in the Caribbean, and Pod. parupenei (Manter, 1963) Pritchard, 1966 and Pod. stenometra Pritchard, 1966, from mullids and chaetodontids, respectively, on the Great Barrier Reef, may each represent a distinct genus awaiting recognition. Our revised concept of Podocotyloides requires a pedunculate ventral sucker, but also a uterine sphincter prior to the genital atrium, a petalloid cirrus appendage, restriction of the vitelline follicles to the hindbody, and for the excretory vesicle to reach to the level of the ventral sucker. Of about 20 nominal species, we recognise just three in Podocotyloides (sensu stricto): Pod. petalophallus, Pod. gracilis (Yamaguti, 1952) Pritchard, 1966 and Pod. magnatestes Aleshkina & Gaevskaya, 1985. We provide new records for Pod. gracilis, and propose two new species of Podocotyloides, Pod. australis n. sp. and Pod. brevivesiculatus n. sp., and one new Pedunculacetabulum species, Ped. inopinipugnus n. sp., all from haemulids. Podocotyloides australis is morphologically indistinguishable from Pod. gracilis, and exploits the same definitive host, but is genetically and biogeographically distinct. It is thus a cryptic species, the first such opecoelid to be formally named.
The Indo-west Pacific is a marine bioregion stretching from the east coast of Africa to Hawaii, French Polynesia and Easter Island. An assessment of the literature from the region found reports of 2,582 trematode species infecting 1,485 fish species. Reports are concentrated in larger fishes, undoubtedly reflecting the tendency for larger hosts to be infected by more species of parasites as well as a collecting bias. Many hundreds of fish species, including many from families known to be rich in trematodes, have yet to be reported as hosts. Despite some areas (the Great Barrier Reef, Hawaii and the waters off China, India and Japan) receiving sustained attention, none can be considered to be comprehensively known. Several regions, most importantly in East Africa, French Polynesia and the Coral Triangle, are especially poorly known. The fauna of the Indo-west Pacific has been reported so unevenly that we consider it impossible to predict the true trematode richness for the region. We conclude that the greatest gap in our understanding is of the geographical distribution of species in the Indo-west Pacific. This is highlighted by the fact that 87% of trematodes in the region have been reported no more than five times. The reliable recognition of species is a major problem in this field; molecular approaches offer prospects for resolution of species identification but have been little adopted to date.
Carbonate budgets are increasingly being used as a key metric to establish reef condition. To better understand spatial variations in framework and sediment net carbonate budgets, we quantified biogenic carbonate production, erosion, and dissolution within and between five distinct geomorphological habitats of Heron Reef on the southern Great Barrier Reef. The protected reef slope had the greatest estimated net framework carbonate budget (22.6 kgCaCO 3 m −2 yr −1 AE 2.4 SE), driven by abundant, fast-growing acroporid corals coupled with low levels of macro-and micro-bioerosion. The estimate of the exposed reef slope was significantly lower due to localized damage from a single tropical cyclone that occurred 7 years prior to this study (9.7 kgCaCO 3 m −2 yr −1 AE 2.8 SE). Within the extensive lagoon, net framework carbonate budgets ranged from 0.24 kgCaCO 3 m −2 yr −1 (AE 0.1 SE) to 3.0 kgCaCO 3 m −2 yr −1 (AE 0.7 SE). The greatest net sediment carbonate budget was estimated within the reef crest (6.0 kgCaCO 3 m −2 yr −1 AE 1.1 SE) and the lowest in the shallow lagoon (1.2 kgCaCO 3 m −2 yr −1 AE 0.2 SE). Chemical dissolution of the sediments exhibited spatial variability, with reef crest and reef flat sediments in a state of net production. Considering the area of each habitat, the net reef framework and sediment budgets across Heron Reef were 4.06 kgCaCO 3 m −2 yr −1 and 2.82 kgCaCO 3 m −2 yr −1 , respectively. The results of this study improve our understanding of spatial variability in carbonate production and bioerosion and provide a comprehensive reef-scale carbonate budget for a relatively undisturbed coral reef ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.