The FLNC mutation that we identified is distinct in terms of the associated phenotype, muscle morphology, and underlying molecular mechanism, thus extending the currently recognized clinical and genetic spectrum of filaminopathies. We conclude that filamin C is a dosage-sensitive gene and that FLNC haploinsufficiency can cause a specific type of myopathy in humans.
The presence of variable degrees of non progressive cognitive impairment is recognized as a clinical feature of patients with Duchenne and Becker muscular dystrophies (DMD and BMD), but its pathogenesis still remains a matter of debate. A number of findings have proved that rearrangements located in the second part of the dystrophin ( DMD ) gene seem to be preferentially associated with cognitive impairment. Dp140 is a distal dystrophin isoform, mainly expressed during fetal brain development, whose role for neuropsychological functioning was suggested. The aims of the current study were to explore the possible association between cognitive impairment and DNA mutations affecting the regulatory regions of Dp140, as well as to compare the neuropsychological functioning of patients affected with DMD and Intermediate muscular dystrophy (IMD) with those affected by Becker muscular dystrophy (BMD). Fiftythree patients genetically diagnosed with DMD, IMD and BMD, subdivided according to sites of mutations along the DMD gene, underwent a neuropsychological assessment, evaluating their general cognitive abilities, verbal memory, attention and executive functions. Twenty patients with mutations, terminating in exon 44 or starting at exon 45 were tested by polymerase chain reaction (PCR) amplification of microsatellites STR44, SK12, SK21 and P20 DXS269, in order to evaluate the integrity of the Dp140 promoter region. According to our statistical results, there was not a significant difference in terms of general intelligence between the allelic forms of the disease, a higher frequency of mental retardation was observed in DMD patients. The patients with BMD had better results on tests, measuring long-term verbal learning memory and executive functions. We found that patients lacking Dp140 performed more poorly on all neuropsychological tests compared to those with preserved Dp140. Overall, our findings suggest that the loss of Dp140 is associated with a higher risk of intellectual impairment among patients with dystrophinopathies and highlights the possible role of this distal isoform in normal cognitive development.
Over 1500 adenomatous polyposis coli (APC) gene mutations have already been identified as causative of familial adenomatous polyposis (FAP). However, routine genetic testing fails to detect mutations in about 10% of classic FAP cases. Recently, it has been shown that a proportion of mutation-negative FAP cases bear molecular changes in deep intronic and regulatory sequences. In this study, we used direct sequencing, followed by multiplex ligation-dependent probe amplification (MLPA) of genomic DNA from family members, affected by classic FAP. We first reported the family as mutation negative. With the launch of a new version of MLPA kit, we retested the family and a novel full deletion of promoter 1B was detected. The exact breakpoints of the deletion were determined by array comparative genomic hybridization (CGH) and long range polymerase chain reaction (PCR), followed by direct sequencing. The total APC expression levels were investigated by quantitative polymerase chain reaction (qPCR) assay and allele-specific expression (ASE) analysis. The APC gene expression was highly reduced, which indicates causative relationship. We suggest that there is a significant possibility that APC promoter 1B mutations could be found in mutation-negative FAP patients. In the light of our findings it seems reasonable to consider targeted genetic re-analysis of APC promoter 1B region in a larger cohort of unsolved cases.
The heavy chain 1 of cytoplasmic dynein (DYNC1H1) is responsible for movement of the motor complex along microtubules and recruitment of dynein components. Mutations in DYNC1H1 are associated with spinal muscular atrophy (SMA), hereditary motor and sensory neuropathy (HMSN), cortical malformations, or a combination of these. Combining linkage analysis and whole-exome sequencing, we identified a novel dominant defect in the DYNC1H1 tail domain (c.1792C>T, p.Arg598Cys) causing axonal HMSN. Mutation analysis of the tail region in 355 patients identified a de novo mutation (c.791G>T, p.Arg264Leu) in an isolated SMA patient. Her phenotype was more severe than previously described, characterized by multiple congenital contractures and delayed motor milestones, without brain malformations. The mutations in DYNC1H1 increase the interaction with its adaptor BICD2. This relates to previous studies on BICD2 mutations causing a highly similar phenotype. Our findings broaden the genetic heterogeneity and refine the clinical spectrum of DYNC1H1, and have implications for molecular diagnostics of motor neuron diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.