We address the problem of efficiently and informatively quantifying how multiplets of variables carry information about the future of the dynamical system they belong to. In particular we want to identify groups of variables carrying redundant or synergistic information, and track how the size and the composition of these multiplets changes as the collective behavior of the system evolves. In order to afford a parsimonious expansion of shared information, and at the same time control for lagged interactions and common effect, we develop a dynamical, conditioned version of the O-information, a framework recently proposed to quantify high-order interdependencies via multivariate extension of the mutual information. We thus obtain an expansion of the transfer entropy in which synergistic and redundant effects are separated. We apply this framework to a dataset of spiking neurons from a monkey performing a perceptual discrimination task. The method identifies synergistic multiplets that include neurons previously categorized as containing little relevant information individually.
About a century ago, cosmic rays were identified as being a source of radiation on Earth. The proof came from two independent experiments. The Italian physicist Domenico Pacini observed the radiation strength to decrease when going from the surface to a few meters underwater (both in a lake and in a sea). At about the same time, in a balloon flight, the Austrian Victor Hess found the ionization rate to increase with height. The present article attempts to give an unbiased historical account of the discovery of cosmic rays -and in doing so it will duly account for Pacini's pioneering work, which involved a technique that was complementary to, and independent from, Hess'. Personal stories, and the pre-and post-war historical context, led Pacini's work to slip into oblivion.
Psychological network approaches propose to see symptoms or questionnaire items as interconnected nodes, with links between them reflecting pairwise statistical dependencies evaluated on cross-sectional, time-series, or panel data. These networks constitute an established methodology to assess the interactions and relative importance of nodes/indicators, providing an important complement to other approaches such as factor analysis. However, focusing the modelling solely on pairwise relationships can neglect potentially critical information shared by groups of three or more variables in the form of higher-order interdependencies. To overcome this important limitation, here we propose an information-theoretic framework based on hypergraphs as psychometric models. As edges in hypergraphs are capable of encompassing several nodes together, this extension can thus provide a richer representation of the interactions that may exist among sets of psychological variables. Our results show how psychometric hypergraphs can highlight meaningful redundant and synergistic interactions on either simulated or state-of-art, re-analyzed psychometric datasets. Overall, our framework extends current network approaches while leading to new ways of assessing the data that differ at their core from other methods, extending the psychometric toolbox and opening promising avenues for future investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.