Precise U-Pb geochronology, Hf isotope compositions and trace element distributions in zircons are combined in the present study to define the timing and sources of the magmatism forming the Medet porphyry copper deposit, Bulgaria. ID-TIMS U-Pb-zircon dating demonstrates that ore-bearing magmatism extended for less than 1.12 Ma. As inferred from the field relationships, it started with the intrusion of a quartz-monzodiorite at 90.59± 0.29 Ma followed by granodiorite porphyries at 90.47±0.30 and 90.27±0.60 Ma and by crosscutting aplite dykes at 90.12±0.36 Ma. These units were overprinted by potassic alteration and host economic copper-(Mo-Au) mineralization. The main magmatic-hydrothermal activity ceased after that, and a later quartz-granodiorite porphyry dyke, dated at 89.26±0.32 Ma, only contains an uneconomic quartz-pyrite mineralization. Assimilation of Lower Paleozoic rocks with a mantle to mantle-crust signature is characteristic of the fertile magma in the Medet deposit, as defined by positive ɛ-Hf values of the inherited zircons. The positive Ce-anomalies and the higher Eu/Eu* ratios of the zircons in the mineralized Cretaceous rocks of Medet deposit argue for crystallization from a generally more oxidized magma compared to the later quartz-granodiorite porphyry dyke. A change in paleostress conditions occurred during the intrusion of the Medet pluton and its dykes. The initial stage reveals E-W extension associated with N-S compression, whereas the younger granodiorite dyke was emplaced during subsequent N-S extension. The large-scale switch of the extensional stress regime during the mineralization was favourable for ore deposition by channelling the fluids and increasing the effective permeability.
The instrumentation and procedure is described for the extraction of very small and pure samples from polished mounts and thin sections Of minerals, for X-ray analysis and other micro-analytical techniques, it uses a stand-m0unted, tunable ultrasonic probe (400 W/15-50 kHz) inclined at 45 ~ to a microscope stage. The tip Of the probe, usually a steel needle, is located on the desired mineral and an appropriate ultrasonic frequency is selected. Very fine powders are prOduced from grains as small as 0.01-0.005 mm. A distinct advantage Of this technique is that, as different minerals powder at different rates and different frequencies, it is possible to separate a single mineral from an intergrowth of two or more minerals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.