Placental vascular gene networks in mammals have been largely unexplored due to a lack of well validated molecular markers to identify them. This is required to study how they form in development, and how they are impacted by embryonic or maternal defects, which in-turn adversely affects the forming heart and vasculature. Such defects are known to be a consequence of maternal iron deficiency (ID), the most common nutrient deficiency world-wide. Here we employed marker analysis to characterise the arterial/arteriole and venous/venule endothelial cells (ECs) during normal placental development, and in the context of maternal ID. We reveal for the first time that placental ECs are unique compared with their embryonic counterparts. In the developing embryo, arterial ECs express Neuropilin1 (Nrp1), Delta-like ligand 4 (Dll4) and Notch1, while developing venous ECs express Neuropilin2 (Nrp2), Apj (Aplnr) and Ephrinb4 (Ephb4). However, in the E15.5 placenta, Nrp1 and Notch1 were restricted to arteries, but not continuing arteriole ECs. The arterial tree exclusively expressed Dll4. Nrp2 showed pan-EC expression at E15.5, while Ephb4 was not present at this stage. However, we found the placental venous vascular tree could be distinguished from the arterial tree by high versus low Endomucin (EMCN) and Apj (Aplnr) expression respectively. Using EMCN, we reveal that the placental arterial, but not venous, vascular tree is adversely impacted by maternal ID, with reduced area, total length and number of junctions of all vessels without affecting the EMCN high vessels. Defects to the embryonic cardiovascular system can therefore have a significant impact on blood flow delivery and expansion of the placental arterial tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.