The substantial variations in the responses of cells to the anaphylatoxin C5a and its desarginated form, C5adR 74 , suggest that more than one type of cell surface receptor for these ligands might exist. However, only a single receptor for C5a and C5adR 74 , CD88, has been characterized to date. Here we report that the orphan receptor C5L2/gpr77, which shares 35% amino acid identity with CD88, binds C5a with high affinity but has a 10-fold higher affinity for C5adR 74 than CD88. C5L2 also has a moderate affinity for anaphylatoxin C3a, but cross-competition studies suggest that C3a binds to a distinct site from C5a. C4a was able to displace C3a, suggesting that C5L2, like the C3a receptor, may have a low binding affinity for this anaphylatoxin. Unlike CD88 and C3a receptor, C5L2 transfected into RBL-2H3 cells does not support degranulation or increases in intracellular [Ca 2؉ ] and is not rapidly internalized in response to ligand binding. However, ligation of C5L2 by anaphylatoxin did potentiate the degranulation response to cross-linkage of the high affinity IgE receptor by a pertussis toxin-sensitive mechanism. These results suggest that C5L2 is an anaphylatoxin-binding protein with unique ligand binding and signaling properties.
We have discovered that fibrillin-1, which forms extracellular microfibrils, can regulate the bioavailability of transforming growth factor (TGF) β1, a powerful cytokine that modulates cell survival and phenotype. Altered TGFβ signaling is a major contributor to the pathology of Marfan syndrome (MFS) and related diseases. In the presence of cell layer extracellular matrix, a fibrillin-1 sequence encoded by exons 44–49 releases endogenous TGFβ1, thereby stimulating TGFβ receptor–mediated Smad2 signaling. This altered TGFβ1 bioavailability does not require intact cells, proteolysis, or the altered expression of TGFβ1 or its receptors. Mass spectrometry revealed that a fibrillin-1 fragment containing the TGFβ1-releasing sequence specifically associates with full-length fibrillin-1 in cell layers. Solid-phase and BIAcore binding studies showed that this fragment interacts strongly and specifically with N-terminal fibrillin-1, thereby inhibiting the association of C-terminal latent TGFβ-binding protein 1 (a component of the large latent complex [LLC]) with N-terminal fibrillin-1. By releasing LLC from microfibrils, the fibrillin-1 sequence encoded by exons 44–49 can contribute to MFS and related diseases.
The orphan receptor C5L2 has recently been described as a high affinity binding protein for complement fragments C5a and C3a that, unlike the previously described C5a receptor (CD88), couples only weakly to
Elastic fibres are insoluble components of the extracellular matrix of dynamic connective tissues such as skin, arteries, lungs and ligaments. They are laid down during development, and comprise a cross-linked elastin core within a template of fibrillin-based microfibrils. Their function is to endow tissues with the property of elastic recoil, and they also regulate the bioavailability of transforming growth factor β. Severe heritable elastic fibre diseases are caused by mutations in elastic fibre components; for example, mutations in elastin cause supravalvular aortic stenosis and autosomal dominant cutis laxa, mutations in fibrillin-1 cause Marfan syndrome and Weill–Marchesani syndrome, and mutations in fibulins-4 and -5 cause autosomal recessive cutis laxa. Acquired elastic fibre defects include dermal elastosis, whereas inflammatory damage to fibres contributes to pathologies such as pulmonary emphysema and vascular disease. This review outlines the latest understanding of the composition and assembly of elastic fibres, and describes elastic fibre diseases and current therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.