The aim of this paper and its prequel is to introduce and classify the irreducible holonomy algebras of the projective Tractor connection. This is achieved through the construction of a 'projective cone', a Ricci-flat manifold one dimension higher whose affine holonomy is equal to the Tractor holonomy of the underlying manifold. This paper uses the result to enable the construction of manifolds with each possible holonomy algebra.
This paper aims to classify the holonomy of the conformal Tractor connection, and relate these holonomies to the geometry of the underlying manifold. The conformally Einstein case is dealt with through the construction of metric cones, whose Riemannian holonomy is the same as the Tractor holonomy of the underlying manifold. Direct calculations in the Ricci-flat case and an important decomposition theorem complete the classification for definitive signature.
The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact-and Einstein-structures arise from other reductions of the Tractor holonomy, as do U (1) and Sp(1, H) bundles over a manifold of smaller dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.