The dynamics of gravity currents are believed to be strongly influenced by dissipation due to turbulence and mixing between the current and the surrounding ambient fluid. This paper describes new theory and experiments on gravity currents produced by lock exchange which suggest that dissipation is unimportant when the Reynolds number is sufficiently high. Although there is mixing, the amount of energy dissipated is small, reducing the current speed by a few percent from the energy-conserving value. Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) suggests that dissipation is an essential ingredient in gravity current dynamics. We show that dissipation is not important at high Reynolds number, and provide an alternative theory that predicts the current speed and depth based on energy-conserving flow that is in good agreement with experiments. We predict that in a deep ambient the front Froude number is 1, rather than the previously accepted value of √ 2. New experiments are reported for this case that support the new theoretical value.
This paper describes an experimental investigation of mixing due to Rayleigh–Taylor instability between two miscible fluids. Attention is focused on the gravitationally driven instability between a layer of salt water and a layer of fresh water with particular emphasis on the internal structure within the mixing zone. Three-dimensional numerical simulations of the same flow are used to give extra insight into the behaviour found in the experiments.The two layers are initially separated by a rigid barrier which is removed at the start of the experiment. The removal process injects vorticity into the flow and creates a small but significant initial disturbance. A novel aspect of the numerical investigation is that the measured velocity field for the start of the experiments has been used to initialize the simulations, achieving substantially improved agreement with experiment when compared with simulations using idealized initial conditions. It is shown that the spatial structure of these initial conditions is more important than their amplitude for the subsequent growth of the mixing region between the two layers. Simple measures of the growth of the instability are shown to be inappropriate due to the spatial structure of the initial conditions which continues to influence the flow throughout its evolution. As a result the mixing zone does not follow the classical quadratic time dependence predicted from similarity considerations. Direct comparison of external measures of the growth show the necessity to capture the gross features of the initial conditions while detailed measures of the internal structure show a rapid loss of memory of the finer details of the initial conditions.Image processing techniques are employed to provide a detailed study of the internal structure and statistics of the concentration field. These measurements demonstrate that, at scales small compared with the confining geometry, the flow rapidly adopts self-similar turbulent behaviour with the influence of the barrier-induced perturbation confined to the larger length scales. Concentration power spectra and the fractal dimension of iso-concentration contours are found to be representative of fully developed turbulence and there is close agreement between the experiments and simulations. Other statistics of the mixing zone show a reasonable level of agreement, the discrepancies mainly being due to experimental noise and the finite resolution of the simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.