Resolving spatially-varying exoplanet features from single-point light curves is essential for determining whether Earth-like worlds harbor geological features and/or climate systems that influence habitability. To evaluate the feasibility and requirements of this spatial feature resolving problem, we present an analysis of multi-wavelength single-point light curves of Earth, where it plays the role of a proxy exoplanet. Here, ~10,000 DSCOVR/EPIC frames collected over a two-year period were integrated over the Earth's disk to yield a spectrallydependent point source and analyzed using singular value decomposition. We found that, between the two dominant principal components (PCs), the second PC contains surface-related features of the planet, while the first PC mainly includes cloud information. We present the first two-dimensional (2D) surface map of Earth reconstructed from light curve observations without any assumptions of its spectral properties. This study serves as a baseline for reconstructing the surface features of Earth-like exoplanets in the future.
[1] The deposition and attachment mechanism of settling snow crystals during snowfall dictates the very initial structure of ice within a natural snowpack. In this letter we apply ballistic deposition as a simple model to study the structural evolution of the growing surface of a snowpack during its formation. The roughness of the snow surface is predicted from the behaviour of the time dependent height correlation function. The predictions are verified by simple measurements of the growing snow surface based on digital photography during snowfall. The measurements are in agreement with the theoretical predictions within the limitations of the model which are discussed. The application of ballistic deposition type growth models illuminates structural aspects of snow from the perspective of formation which has been ignored so far. Implications of this type of growth on the aerodynamic roughness length, density, and the density correlation function of new snow are discussed. Citation: Löwe, H., L. Egli, S. Bartlett, M. Guala, and C. Manes (2007), On the evolution of the snow surface during snowfall, Geophys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.