Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
Results of ab initio molecular dynamics ͑AIMD͒ simulations ͑density functional theory+ PBE96͒ of the dynamics of waters in the hydration shells surrounding the Zn 2+ ion ͑T Ϸ 300 K, Ϸ 1 gm/ cm 3 ͒ are compared to simulations using a combined quantum and classical molecular dynamics ͓AIMD/molecular mechanical ͑MM͔͒ approach. Both classes of simulations were performed with 64 solvating water molecules ͑ϳ15 ps͒ and used the same methods in the electronic structure calculation ͑plane-wave basis set, time steps, effective mass, etc.͒. In the AIMD/MM calculation, only six waters of hydration were included in the quantum mechanical ͑QM͒ region. The remaining 58 waters were treated with a published flexible water-water interaction potential. No reparametrization of the water-water potential was attempted. Additional AIMD/MM simulations were performed with 256 water molecules. The hydration structures predicted from the AIMD and AIMD/MM simulations are found to agree in detail with each other and with the structural results from x-ray data despite the very limited QM region in the AIMD/MM simulation. To further evaluate the agreement of these parameter-free simulations, predicted extended x-ray absorption fine structure ͑EXAFS͒ spectra were compared directly to the recently obtained EXAFS data and they agree in remarkable detail with the experimental observations. The first hydration shell contains six water molecules in a highly symmetric octahedral structure is ͑maximally located at 2.13-2.15 Å versus 2.072 Å EXAFS experiment͒. The widths of the peak of the simulated EXAFS spectra agree well with the data ͑8.4 Å 2 versus 8.9 Å 2 in experiment͒. Analysis of the H-bond structure of the hydration region shows that the second hydration shell is trigonally bound to the first shell water with a high degree of agreement between the AIMD and AIMD/MM calculations. Beyond the second shell, the bonding pattern returns to the tetrahedral structure of bulk water. The AIMD/MM results emphasize the importance of a quantum description of the first hydration shell to correctly describe the hydration region. In these calculations the full d 10 electronic structure of the valence shell of the Zn 2+ ion is retained. The simulations show substantial and complex charge relocation on both the Zn 2+ ion and the first hydration shell. The dipole moment of the waters in the first hydration shell is 3.4 D ͑3.3 D AIMD/MM͒ versus 2.73 D bulk. Little polarization is found for the waters in the second hydration shell ͑2.8 D͒. No exchanges were seen between the first and the second hydrations shells; however, many water transfers between the second hydration shell and the bulk were observed. For 64 waters, the AIMD and AIMD/MM simulations give nearly identical results for exchange dynamics. However, in the larger particle simulations ͑256 waters͒ there is a significant reduction in the second shell to bulk exchanges.
First-principles dynamics simulations (DFT, PBE96, and PBE0) and electron scattering calculations (FEFF9) provide near-quantitative agreement with new and existing XAFS measurements for a series of transition-metal ions interacting with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This analysis does not require either the development of empirical interparticle interaction potentials or structural models of hydration. However, it provides consistent parameter-free analysis and improved agreement with the higher-R scattering region (first- and second-shell structure, symmetry, dynamic disorder, and multiple scattering) for this comprehensive series of ions. DFT+GGA MD methods provide a high level of agreement. However, improvements are observed when exact exchange is included. Higher accuracy in the pseudopotential description of the atomic potential, including core polarization and reducing core radii, was necessary for very detailed agreement. The first-principles nature of this approach supports its application to more complex systems.
Results of parameter-free first principles simulations of a spin up 3d(5) Fe(3+) ion hydrated in an aqueous solution (64 waters, 30 ps, 300 K) are reported. The first hydration shell associated with the first maximum of the radial distribution function, g(FeO)(r), at d(Fe-O(I)) = 2.11-2.15 A, contains 6 waters with average d(OH) = 0.99 A, in good agreement with observations. A second shell with average coordination number 13.3 can be identified with average shell radius of d(Fe-O(II)) = 4.21-4.32 A. The waters in this hydration shell are coordinated to the first shell via a trigonal H-bond network with d(O(I)-O(II)) = 2.7-2.9 A, also in agreement with experimental measurements. The first shell tilt angle average is 33.4 degrees as compared to the reported value of 41 degrees . Wannier-Boys orbitals (WBO) show an interaction between the unoccupied 3d orbitals of the Fe(3+) valence (spin up, 3d(5)) and the occupied spin down lone pair orbitals of first shell waters. The effect of the spin ordering of the Fe(3+) ion on the WBO is not observed beyond the first shell. From this local bond analysis and consistent with other observations, the electronic structure of waters in the second shell is similar to that of a bulk water even in this strongly interacting system. H-bond decomposition shows significant bulk-like structure within the second shell for Fe(3+). The vibrational density of states shows a first shell red shift of 230 cm(-1) for the v(1),2v(2),v(3) overtone, in reasonable agreement with experimental estimates for trivalent cations (300 cm(-1)). No exchanges between first and second shell were observed. Waters in the second shell exchanged with bulk waters via dissociative and associative mechanisms. Results are compared with an AIMD study of Al(3+) and 64 waters. For Fe(3+) the average first shell tilt angle is larger and the tilt angle distribution wider. H-bond decomposition shows that second shell to second shell H-bonding is enhanced in Fe(3+) suggesting an earlier onset of bulk-like water structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.