This approach can facilitate treatment selection by accurately predicting the subtype in undifferentiated NSCLC biopsies, reducing to 7% the proportion of cases without a definite or probable histologic subtype.
A number of procedures have been developed that allow the genetic parameters of natural populations to be estimated using relationship information inferred from marker data rather than known pedigrees. Three published approaches are available; the regression, pair‐wise likelihood and Markov Chain Monte Carlo (MCMC) sib‐ship reconstruction methods. These were applied to body weight and molecular data collected from the Soay sheep population of St. Kilda, which has a previously determined pedigree. The regression and pair‐wise likelihood approaches do not specify an exact pedigree and yielded unreliable heritability estimates, that were sensitive to alteration of the fixed effects. The MCMC method, which specifies a pedigree prior to heritability estimation, yielded results closer to those determined using the known pedigree. In populations of low average relationship, such as the Soay sheep population, determination of a reliable pedigree is more useful than indirect approaches that do not specify a pedigree.
Markov chain Monte Carlo procedures allow the reconstruction of full-sibships using data from genetic marker loci only. In this study, these techniques are extended to allow the reconstruction of nested full- within half-sib families, and to present an efficient method for calculating the likelihood of the observed marker data in a nested family. Simulation is used to examine the properties of the reconstructed sibships, and of estimates of heritability and common environmental variance of quantitative traits obtained from those populations. Accuracy of reconstruction increases with increasing marker information and with increasing size of the nested full-sibships, but decreases with increasing population size. Estimates of variance component are biased, with the direction and magnitude of bias being dependent upon the underlying errors made during pedigree reconstruction.
Molecular marker data collected from natural populations allows information on genetic relationships to be established without referencing an exact pedigree. Numerous methods have been developed to exploit the marker data. These fall into two main categories: method of moment estimators and likelihood estimators. Method of moment estimators are essentially unbiased, but utilise weighting schemes that are only optimal if the analysed pair is unrelated. Thus, they differ in their efficiency at estimating parameters for different relationship categories. Likelihood estimators show smaller mean squared errors but are much more biased. Both types of estimator have been used in variance component analysis to estimate heritability. All marker-based heritability estimators require that adequate levels of the true relationship be present in the population of interest and that adequate amounts of informative marker data are available. I review the different approaches to relationship estimation, with particular attention to optimizing the use of this relationship information in subsequent variance component estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.