Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) has proven to be a powerful analytical tool to investigate problems in several fields of life science. A novel application is in the field of forensics, particularly in the analysis of latent fingermarks. This technology enables images of the fingermark ridge detail and additional intelligence to be simultaneously obtained. Although several methods are available to deposit the MALDI matrix, to make the technology forensically operational, another deposition approach was devised and reported, namely the 'dry-wet' method. In the present study, the efficiency of the dry-wet method was evaluated and compared with the conventional spray coat methodology. Results indicate that the dry-wet method is superior for all the donors' typologies in terms of ion signal intensity and clarity of the ridge details. To underpin the reasons of this efficiency, scanning electron microscopy analyses were carried out in parallel to MALDI-MSI experiments using matrices of different particle size. Results have confirmed that the particle size plays an important role in the efficiency of the method as higher quality images and higher intensity spectra are produced as the matrix particle size decreases.
Nano-scaled multilayered TiAlN/VN coatings have been grown on stainless steel and M2 high speed steel substrates at U B =-85 V in an industrial, four target, Hauzer HTC 1000 coater using combined cathodic steered arc etching/unbalanced magnetron sputtering. X-ray diffraction (XRD) has been used to investigate the effects of process parameters (Target Power) on texture evolution (using texture parameter T*), development of residual stress (sin 2 method) and nano-scale multilayer period. The composition of the coating was determined using energy dispersive X-ray analysis. The thermal behaviour of the coatings in air was studied using thermo-gravimetric analysis, XRD and scanning electron microscopy. The bi-layer period varied between 2.8 and 3.1 nm and in all cases a {1 1 0} texture developed with a maximum value T* = 4.9. The residual stress varied between-5.2 and-7.4 GPa. The onset of rapid oxidation occurred between 62 and 645 C depending on the (Ti+Al):V ratio. After oxidation in air at 550 C AlVO4, TiO2 and V2O5 phases were identified by XRD with the AlVO4, TiO2 being the major phases. The formation of AlVO4 appears to disrupt the formation of Al2O3 which imparts oxidation resistance to TiAlN based coatings. Increasing the temperature to 600 and 640 C led to a dramatic increase in the formation of V2O5 which was highly oriented (001) with a plate-like morphology. At 640 C there was no evidence of the coating on XRD. Increasing the temperature to 670C led to further formation of AlVO4 and a dramatic reduction in V2O5.
Defect growth in multilayer chromium nitride/niobium nitride coatings produced by combined high power impulse magnetron sputtering and unbalance magnetron sputtering technique. Thin Solid Films, 636, 558-566.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.