The fuel properties of microalgal biodiesel are predicted using published microalgal fatty acid (FA) compositions and predictive fuel models. Biodiesels produced from the microalgae investigated are predicted to have extremely poor oxidative stabilities and the majority also have poor coldflow properties. The cetane number in most cases is out of specification, but less so than the oxidative stability and cold flow. These findings support the idea that feedstocks rich in monounsaturated fatty acids (MUFAs) are desirable for biodiesel but the composition of the saturated fatty acids (SFAs) is also shown to be of great importance. There is an apparent relationship between algal class and the percentage of FAs represented by MUFA. This potentially allows for the identification of high-MUFA algal classes, or at least provides some basis for researchers to make initial selections of target classes for bioprospecting. Comparisons of FA groups between algal classes also show that the SFAs of Mediophyceae contain significantly higher proportions of C14:0, which is in contrast to the normally abundant C16:0 and the Mediophyceae therefore have better cold-flow characteristics than other classes with similar total SFA contents. Certain particularly promising cases for biodiesel production are presented as species level examples of feedstocks that are close to satisfying the biodiesel standards and to further illustrate the challenges that remain. Variation in FA composition as a response to changes in certain environmental variables forms another important facet to feedstock selection and is briefly considered, with suggestions for further research.
Programmed cell death (PCD) is central to organism development and for a long time was considered a hallmark of multicellularity. Its discovery, therefore, in unicellular organisms presents compelling questions. Why did PCD evolve? What is its ecological effect on communities? To answer these questions, one is compelled to consider the impacts of PCD beyond the cell, for death obviously lowers the fitness of the cell. Here, we examine the ecological effects of PCD in different microbial scenarios and conclude that PCD can increase biological complexity. In mixed microbial communities, the mode of death affects the microenvironment, impacting the interactions between taxa. Where the population comprises groups of relatives, death has a more explicit effect. Death by lysis or other means can be harmful, while PCD can evolve by providing advantages to relatives. The synchronization of death between individuals suggests a group level property is being maintained and the mode of death also appears to have had an impact during the origin of multicellularity. PCD can result in the export of fitness from the cell to the group level via re-usable resources and PCD may also provide a mechanism for how groups beget new groups comprising kin. Furthermore, PCD is a means for solving a central problem of group living - the toxic effects of death - by making resources in dying cells beneficial to others. What emerges from the data reviewed here is that while PCD carries an obvious cost to the cell, it can be a driver of complexity in microbial communities.
Dinoflagellates are known to possess chloroplasts of multiple origins derived from a red alga, a green alga, haptophytes, or diatoms. The monophyletic "dinotoms" harbor a chloroplast of diatom origin, but their chloroplasts are polyphyletic belonging to one of four genera: Chaetoceros, Cyclotella, Discostella, or Nitzschia. It has been speculated that serial replacement of diatom-derived chloroplasts by other diatoms has caused this diversity of chloroplasts. Although previous work suggested that the endosymbionts of Nitzschia origin might not be monophyletic, this has not been seriously investigated. To infer the number of replacements of diatom-derived chloroplasts in dinotoms, we analyzed the phylogenetic affinities of 14 species of dinotoms based on the endosymbiotic rbcL gene and SSU rDNA, and the host SSU rDNA. Resultant phylogenetic trees revealed that six species of Nitzschia were taken up by eight marine dinoflagellate species. Our phylogenies also indicate that four separate diatom species belonging to three genera were incorporated into the five freshwater dinotoms. Particular attention was paid to two crucially closely related species, Durinskia capensis and a novel species, D. kwazulunatalensis, because they possess distantly related Nitzschia species. This study clarified that any of a total of at least 11 diatom species in five genera are employed as an endosymbiont by 14 dinotoms, which infers a more frequent replacement of endosymbionts in the world of dinotoms than previously envisaged.
Highlights d A novel alga closely related to the enigmatic rappemonads was isolated d It is cosmopolitan and seemingly an important contributor to global production d Organellar genome analyses placed it as an independent branch in the Haptophyta d A new haptophyte class, Rappephyceae, was erected based on its unique morphology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.