Quality-control procedures and their impact on data quality are described for the High-Frequency Ocean Radar (HFR) network in Australia, in particular for the commercial phased-array (WERA) HFR type. Threshold-based quality-control procedures were used to obtain radial velocity and signal-to-noise ratio (SNR), however, values were set through quantitative analyses with independent measurements available within the HFR coverage, when available, or from long-term data statistics. An artifact removal procedure was also applied to the spatial distribution of SNR for the first-order Bragg peaks, under the assumption the SNR is a valid proxy for radial velocity quality and that SNR decays with range from the receiver. The proposed iterative procedure was specially designed to remove anomalous observations associated with strong SNR peaks caused by the 50 Hz sources. The procedure iteratively fits a polynomial along the radial beam (1-D case) or a surface (2-D case) to the SNR associated with the radial velocity. Observations that exceed a detection threshold were then identified and flagged. After removing suspect data, new iterations were run with updated detection thresholds until no additional spikes were found or a maximum number of iterations was reached.
Direction-finding SeaSonde (4.463 MHz; 5.2625 MHz) and phased-array WEllen RAdar WERA (9.33 MHz; 13.5 MHz) High-frequency radar (HFR) systems are routinely operated in Australia for scientific research, operational modeling, coastal monitoring, fisheries, and other applications. Coverage of WERA and SeaSonde HFRs in Western Australia overlap. Comparisons with subsurface currents show that both HFR types agree well with current meter records. Correlation (R), root-mean-squares differences (RMSDs), and mean bias (bias) for hourly-averaged radial currents range between R = (−0.03, 0.78), RMSD = (9.2, 30.3) cm/s, and bias = (−5.2, 5.2) cm/s for WERAs; and R = (0.1, 0.76), RMSD = (17.4, 33.6) cm/s, bias = (0.03, 0.36) cm/s for SeaSonde HFRs. Pointing errors (θ) are in the range θ = (1°, 21°) for SeaSonde HFRs, and θ = (3°, 8°) for WERA HFRs. For WERA HFR current components, comparison metrics are RU = (−0.12, 0.86), RMSDU = (12.3, 15.7) cm/s, biasU = (−5.1, −0.5) cm/s; and, RV = (0.61, 0.86), RMSDV = (15.4, 21.1) cm/s, and biasV = (−0.5, 9.6) cm/s for the zonal (u) and the meridional (v) components. Magnitude and phase angle for the vector correlation are ρ = (0.58, 0.86), φ = (−10°, 28°). Good match was found in a direct comparison of SeaSonde and WERA HFR currents in their overlap (ρ = (0.19, 0.59), φ = (−4°, +54°)). Comparison metrics at the mooring slightly decrease when SeaSonde HFR radials are combined with WERA HFR: scalar (vector) correlations for RU, V, (ρ) are in the range RU = (−0.20, 0.83), RV = (0.39, 0.79), ρ = (0.47, 0.72). When directly compared over the same grid, however, vectors from WERA HFR radials and vectors from merged SeaSonde–WERA show RU (RV) exceeding 0.9 (0.7) within the HFR grid. Despite the intrinsic differences between the two types of radars used here, findings show that different HFR genres can be successfully merged, thus increasing current mapping capability of the existing HFR networks, and minimising operational downtime, however at a likely cost of slightly decreased data quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.