Few studies have examined how life history traits and the climate envelope influence the ability of species to respond to climate change and habitat degradation. In this study, we test whether 18 species-specific variables, related to the climate envelope, ecological envelope and life history, could predict recent population trends (over 17 years) of 71 common breeding bird species in France. Habitat specialists were declining at a much higher rate than generalists, a sign that habitat quality is decreasing globally. The lower the thermal maximum (temperature at the hot edge of the climate envelope), the more negative are the population trends and the less tolerant these species are climate warming, regardless of the thermal range over which these species occur. The life history trait 'the number of broods per year' was positively related to recent trends, suggesting that single-brooded species might be more sensitive to advances in food peak due to climate change, as it increases the risk of mistiming their single-breeding event. Annual fecundity explained long-term declines, as it is a good proxy for most other demographic rates, with shorter-lived species being more sensitive to global change: individuals of species with higher fecundity might have too short a life to learn to adapt to directional changes in their environment. Finally, there was evidence that natal dispersal was a predictor of recent trends, with species with high natal dispersal experiencing smaller population declines than species with low natal dispersal. This is expected if the higher the natal dispersal, the larger the ability to shift spatially when facing changes in local habitat or climate, in order to track optimal conditions and adapt to global change. Identifying decline-promoting factors allow us to infer mechanisms responsible for observed declines in wild bird populations facing global change, and by doing so allow for a more pre-emptive approach to conservation planning.
Urbanization is increasing across the globe and there is growing interest in urban ecology and a recognition that developed areas may be important for conservation. We review the factors influencing urban avian assemblages, focusing on habitat type and anthropogenic resource provision, and analyse data from a common bird monitoring scheme to assess some of these issues. The review suggests that (1) local factors are more important than regional ones in determining the species richness of urban avian assemblages, raising the potential for the management of urban sites to deliver conservation; (2) habitat fragmentation frequently influences urban avian assemblages, with the effects of patch size being greater than those of isolation, and (3) urban bird assemblages appear to respond positively to increasing the structural complexity, species richness of woody vegetation and supplementary feeding, and negatively to human disturbance. Data from Britain's Breeding Bird Survey, combined with habitat data obtained from aerial photographs, were used to assess a number of these issues at the resolution of 1‐km squares. Green‐space constituted 45% of these squares, and domestic gardens contributed 50% of this green‐space, though their contribution to large continuous patches of green‐space was negligible. There was no significant positive correlation between the densities of individual species in urban areas and surrounding rural areas. Rural species richness declined with increasing latitude, but urban species richness was not correlated with latitude. This contrast contributes to slightly higher avian species richness in rural squares in Southern England than urban ones. Occupancy and abundance were strongly positively correlated in urban avian assemblages, and some indicator species of conservation concern occurred in few urban areas and at low densities. Such species will require conservation action to be precisely targeted within urban areas. Of the urban indicators of conservation concern, only the House Sparrow Passer domesticus and Common Starling Sturnus vulgaris were more abundant in urban than rural areas. Moreover, the densities of these two species were strongly and positively correlated, indicating that they may be limited by shared resources, such as nest‐sites or supplementary food. There was little evidence that high densities of nest‐predating corvids were associated with reduced densities of their prey species. Species richness and the densities of individual species frequently declined with an increasing number of buildings. Current trends for the densification of many British urban areas are thus likely to be detrimental for many bird species.
Aims Biogeographical evidence suggests a strong link between climate and patterns of species diversity, and climate change is known to cause range shifts. However, there is little understanding of how shifts affect community composition and we lack empirical evidence of recent impacts of climate change on the diversity of vertebrates. Using a long‐term comprehensive dataset on bird abundance, we explore recent patterns of change in different components of species diversity and avian communities, and postulate a process to explain the observed changes in diversity and specialization. Location Britain. Methods We used Breeding Bird Survey data for Britain from 1994 to 2006 to calculate site‐specific diversity and community specialization indices. We modelled these indices using generalized additive models to examine the relationship between local climate and spatial and temporal trends in community metrics and the relationship between changes in diversity and specialization. Results Local temperature was positively associated with alpha diversity, which increased over the study period, supporting empirical and theoretical predictions of the effect of climate warming. Diversity increased in all habitats, but the rate of increase was greatest in upland areas. However, temperature was negatively associated with community specialization indices, which declined over the same period. Our modelling revealed a nonlinear relationship between community specialization and species diversity. Main conclusions Our models of diversity and specialization provide stark empirical evidence for a link between warming climate and community homogenization. Over a 13‐year period of warming temperatures, diversity indices increased while average community specialization decreased. We suggest that the observed diversity increases were most likely driven by range expansion of generalist species and that future warming is likely to increase homogenization of community structure. When assessed in combination, diversity and specialization measures provide a powerful index for monitoring the impacts of climate change.
While there is intense debate regarding the impact of domestic cat populations on wildlife, its resolution is hindered by the lack of quite basic information. Domestic cats are generalist and obligate predators that receive supplementary food, and their population density reflects that of humans more than the density of their prey. In such a predator–prey system there is the potential for cat populations to have negative impacts on avian assemblages, which may be indicated by negative correlations between cat density and avian species richness and density. Here we report on the nature of such correlations across urban areas in Britain both for groups of species classified regarding their vulnerability to cat predation and individual species. Taking the availability of green space into account, we find negative relationships between cat densities and the number of bird species breeding in urban 1 km × 1 km squares. These relationships are particularly strong among groups of species that are vulnerable to cat predation. We find positive correlations between cat and avian densities; these have low explanatory power and shallow slopes among the species groups that are particularly vulnerable to cat predation. Evidence that the densities of individual species that are vulnerable to cat predation are negatively correlated with cat densities is equivocal, with at least half the species showing no marked pattern, and the remainder exhibiting contrasting patterns. Our results appear not to be confounded by the density of nest‐predating corvids (carrion crow, magpie, and jay), as the density of these species was not strongly negatively correlated with avian species richness or density. The general lack of marked negative correlations between cat and avian densities at our focal spatial scale may be a consequence of consistently high cat densities in our study areas (minimum density is 132 cats per square kilometre), and thus uniformly high impacts of cat populations on urban avian assemblages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.