We report on K-band interferometric observations of the bright, rapidly rotating star Regulus (type B7 V) made with the CHARA Array on Mount Wilson, California. Through a combination of interferometric and spectroscopic measurements, we have determined for Regulus the equatorial and polar diameters and temperatures, the rotational velocity and period, the inclination and position angle of the spin axis, and the gravity darkening coefficient. These first results from the CHARA Array provide the first interferometric measurement of gravity darkening in a rapidly rotating star and represent the first detection of gravity darkening in a star that is not a member of an eclipsing binary system.
Optical interferometry is entering a new age, with several ground-based long-baseline observatories now making observations of unprecedented resolution. Interferometers bring a new level of resolution to bear on spectroscopic binaries, enabling the full extraction of the physical parameters for the component stars with high accuracy. In the case of double-lined systems, a geometrically determined orbital parallax becomes available as well. The first step in preparing to observe spectroscopic binaries is to list them, which has not been done since the 1989 publication of the Eighth Catalogue of the Orbital Elements of Spectroscopic Binaries by Batten et al. We present a new catalog with roughly half again as many listings as the Eighth Catalogue. Angular separation predictions are made for each catalog entry. The numbers of spectroscopic binaries available for study as a function of several important observational parameters are explored, and in particular, the number of spectroscopic binaries as a function of expected separation is discussed.
An updated, binary-coded message has been developed for transmission to extraterrestrial intelligences in the Milky Way galaxy. The proposed message includes basic mathematical and physical concepts to establish a universal means of communication followed by information on the biochemical composition of life on Earth, the Solar System’s time-stamped position in the Milky Way relative to known globular clusters, as well as digitized depictions of the Solar System, and Earth’s surface. The message concludes with digitized images of the human form, along with an invitation for any receiving intelligences to respond. Calculation of the optimal timing during a given calendar year is specified for potential future transmission from both the Five-hundred-meter Aperture Spherical radio Telescope in China and the SETI Institute’s Allen Telescope Array in northern California to a selected region of the Milky Way which has been proposed as the most likely location for life to have developed. These powerful new beacons, the successors to the Arecibo radio telescope which transmitted the 1974 message upon which this expanded communication is in part based, can carry forward Arecibo’s legacy into the 21st century with this equally well-constructed communication from Earth’s technological civilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.