3-Dialkylaminomethyl substituted salicylaldoximes are efficient metal salt extractants, and, in contrast to related "salen"-based reagents, are sufficiently stable to acid hydrolysis to allow commercial application in base metal recovery. Crystal structures show that metal salts are bound by a zwitterionic form of the reagents, with copper(II) nitrate, tetrafluoroborate and trifluoroacetate forming [Cu()(2)X(2)] assemblies in a tritopic arrangement with a trans-disposition of the anions outwith the coordination sphere. Copper(II) chloride, bromide and zinc(II) chloride form 1:1 assemblies, [Cu()X(2)], with the halides in the inner coordination sphere of the metal, leading to high chloride selectivity and very good mass transport efficiencies of CuCl(2). Introduction of the anion-binding sites into the salicylaldoxime extractants changes their cation selectivities; the ligands co-extract small amounts of Fe(III) along with Cu(II) from mixed metal aqueous feed solutions, an issue which will need to be addressed prior to industrial application.
The pH-dependence of simultaneous metal- and sulfate-loading of simple salen derivatives demonstrates the feasibility of their application as extractants for recovery of base metals from the leaching of sulfidic ores. The efficacy of the ligands depends on the templating of the sulfate binding site by the attendant metal ion.
Attaching dialkylaminomethyl arms to commercial phenolic oxime copper extractants yields reagents which transport base metal salts very efficiently by forming neutral 1:1 or 1:2 complexes with zwitterionic forms of the ligands.
Amide-functionalised salen ligands capable of extracting metal salts have been synthesised and characterised. Single-crystal X-ray structure determinations of complexes of NiSO4, [Ni(L)(SO4)], confirm that the ionophores are in a zwitterionic form with Ni(II) bound in the deprotonated salen moiety and the SO4(2-) ion associated with protonated pendant N'-amidopiperazine groups. Treatment of [Ni(L)(SO4)] with base removes the protons from the pendant amido-amine group resulting in loss of the SO4(2-) ion and formation of metal-only complexes of type [Ni(L-2H)], which have been characterized by single-crystal X-ray diffraction. Three of the ligands with solubilities suitable for solvent extraction studies show loading and stripping pH-profiles that are suitable for the recovery of CuSO4 or CuCl2 from industrial leach solutions. The copper-only complexes, [Cu(L-2H)], are selective for Cl- over SO4(2-) in both solvent extraction and bulk liquid membrane transport experiments and were found to bind Cl- in two steps via the formation of a 1:1:1 [Cu(L-H)Cl] assembly, followed by a 1:1:2 [Cu(L)Cl2] assembly as the pH of the aqueous phase is lowered. The anion transport selectivity was evaluated for a number of other mono-charged anions and interestingly the ligands were found to display a preference for the Br- ion. To probe the influence of the Hofmeister bias on the selectivity of anion complexation, single-phase potentiometric titration experiments were employed to investigate the binding of SO4(2-) and Cl- by one of the copper only complexes, [Cu(L-2H)] in 95 %/5 % MeOH/water. Under these conditions selectivity was reversed (SO4(2-)>Cl-) confirming that the Hofmeister bias, which reflects the relative hydration energies of the anions, dominates the selectivity of anion extraction from aqueous media into CHCl3.
Comparative solvent extraction (water/chloroform) studies of Ni(II) and Cu(II) employing a dinonyl-substituted N3O2-donor macrocycle (L2) as extractant have been undertaken from sulfate, chloride, nitrate and acetate-containing aqueous media. Contrary to expectations, efficient extraction of both metal sulfates was observed, the degree of extraction being comparable (or slightly enhanced) relative to that observed for each of the other anionic systems. X-Ray diffraction studies of [NiL1(H2O)3]SO4 x 4H2O and [CuL1(H2O)]SO4 x 6.67 H2O (where L1 is the unsubstituted derivative of L2) show that each complex occurs as a hydrogen-bonded 'cluster', with the sulfate anions involved in hydrogen bonded networks that incorporate ligand amine protons and water molecules; in the copper complex, which adopts a dimeric arrangement, simultaneous sulfate binding to a copper site is also present. In each complex the macrocyclic ligand fails to coordinate via its ether oxygen donors but instead is arranged so that the metal ion and sulfate anions are somewhat shielded hydrophobically from the exterior of the complex cluster assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.