We present experimental results on simultaneous space-time measurements for the gravity wave turbulence in a large laboratory flume. We compare these results with predictions of the weak turbulence theory (WTT) based on random waves, as well as with predictions based on the coherent singular wave crests. We see that both wavenumber and the frequency spectra are not universal and dependent on the wave strength, with some evidence in favor of WTT at larger wave intensities when the finite flume effects are minimal. We present further theoretical analysis of the role of the random and coherent waves in the wave probability density function (PDF) and the structure functions (SFs). Analyzing our experimental data we found that the random waves and the coherent structures/breaks coexist: the former show themselves in a quasi-gaussian PDF core and in the low-order SFs, and the latter -in the PDF tails and the high-order SF's. It appears that the xspace signal is more intermittent than the t-space signal, and the x-space SFs capture more singular coherent structures than do the t-space SFs. We outline an approach treating the interactions of these random and coherent components as a turbulence cycle characterized by the turbulence fluxes in both the wavenumber and the amplitude spaces.
There is a paucity of data and insight in the mechanisms of, and controls on flow separation and recirculation at natural sharply-curved river bends. Herein we report on successful laboratory experiments that elucidate flow structure in one constant-width bend and a second bend with an outer-bank widening. The experiments were performed with both a flat immobile gravel bed and mobile sand bed with dominant bedload sediment transport.In the constant-width bend with immobile bed, a zone of mainly horizontal flow separation (vertical rotational axis) formed at the inner bank that did not contain detectable flow recirculation, and an outer-bank cell of secondary flow with streamwise oriented rotational axis. Surprisingly, the bend with widening at the outer bank and immobile bed did not lead to a transverse expansion of the flow. Rather, flow in the outer-bank widening weakly recirculated around a vertical axis and hardly interacted with the inner part of the bend, which behaved as a constant-width bend.In the mobile bed experiment, downstream of the bend apex a pronounced depositional bar developed at the inside of the bend and pronounced scour occurred at the outside. Moreover the deformed bed promoted flow separation over the bar, including return currents. In the constant-width bend, the topographic steering impeded the generation of an outer-bank cell of secondary flow. In the bend with outer-bank widening, the topographic steering induced an outward expansion of the flow, whereby the major part of the discharge was conveyed in the central part of the widening section. Flow in the outer-bank widening was highly three dimensional and included return currents near the bottom.In conclusion, the experiments elucidated three distinct processes of flow separation common in sharp bends: flow separation at the inner bank, an outer-bank cell of secondary flow, and flow separation and recirculation in an outer-bank widening.
Abstract:The acoustic Doppler velocimeter (ADV) measures three-dimensional velocities in a small, remote sampling volume at high frequencies, however, these measurements incorporate errors that are intrinsic to the measurement technique. This paper demonstrates a new method for calculating the total measurement errors, including sampling errors, Doppler noise and errors due to velocity shear in the sampling volume associated with single-point ADV measurements. This procedure incorporates both the eects of instrument con®guration and the distribution of errors between velocity components for any probe orientation. It is shown that the ADV can characterize turbulent velocity¯uctuations at frequencies up to the maximum sampling rate and that Reynolds shear stress errors are very small.
This paper describes and assesses: (i) the use of a new instrument for the determination of three-dimensional flow velocities in natural rivers, the acoustic Doppler velocimeter (ADV); and (ii) a method for positioning and orienting such measurements relative to a single local coordinate system to relate flow velocity vectors with the bed and water surface. The ADV uses the Doppler shift principle to measure the velocity of small particles, assumed to be moving at velocities similar to the fluid. Velocity is resolved into three orthogonal components, and measured in a volume 5 cm below the sensor head, minimizing interference of the flow field, and allowing measurements to be made close to the bed. A simple method for positioning and orienting the instrument using digital tacheometry is described, and is used to obtain velocity measurements concurrently with measurements of both bed and water surface topography. The paper includes a preliminary field assessment of the ADV by comparing velocity profiles with those generated from Marsh McBirney electromagnetic current meters, and a full field assessment of the position and orientation methodology. These results suggest that the recommended methods in combination with an ADV are able to provide reliable mean three-dimensional velocity field information and accurate bed and surface topography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.