SUMMARY
Parathyroid hormone (PTH) suppresses Dickkopf 1 (Dkk1) expression in osteoblasts. To determine whether this suppression is essential for PTH-mediated Wnt signaling and bone formation, we examined mice that overexpress Dkk1 in osteoblasts (Dkk1 mice). Dkk1 mice were osteopenic due to abnormal osteoblast and osteoclast activity. When fed a low calcium diet, and in two other models of hyperparathyroidism, these mice failed to develop the peritrabecular stromal cell response (“osteitis fibrosis”) and new bone formation seen in wild type mice. Despite these effects of Dkk1 overexpression, PTH still activated Wnt signaling in Dkk1 mice and in osteoblastic cells cultured from these mice. In cultured MC3T3E1 preosteoblastic cells, PTH dramatically suppressed Dkk1 expression, induced PKA-mediated phosphorylation of β-catenin and significantly enhanced Lef1 expression. Our findings indicate that the full actions of PTH require intact Wnt signaling but that PTH can activate the Wnt pathway despite overexpression of Dkk1.
Multiple myeloma (MM) causes lytic bone lesions due to increased bone
resorption and concomitant marked suppression of bone formation. Sclerostin
(Scl) levels, an osteocyte-derived inhibitor of Wnt/β-catenin signaling,
are elevated in MM patient sera and are increased in osteocytes in MM-bearing
mice. We show here that genetic deletion of Sost, the gene encoding Scl,
prevented MM-induced bone disease in an immune-deficient mouse model of early
MM, and that administration of anti-Scl antibody (Scl-Ab) increased bone mass
and decreases osteolysis in immune-competent mice with established MM. Sost/Scl
inhibition increased osteoblast numbers, stimulated new bone formation and
decreased osteoclast number in MM-colonized bone. Further, Sost/Scl inhibition
did not affect tumor growth in vivo or anti-myeloma drug
efficacy in vitro. These results identify the osteocyte as a
major contributor to the deleterious effects of MM in bone and osteocyte-derived
Scl as a promising target for the treatment of established MM-induced bone
disease. Further, Scl did not interfere with efficacy of chemotherapy for MM
suggesting that combined treatment with anti-myeloma drugs and Scl-Ab should
effectively control MM growth and bone disease, providing new avenues to
effectively control MM and bone disease in patients with active MM.
Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as investigate the effect of targeting sclerostin with a neutralizing antibody (scl-Ab) in MM bone disease.
Here we confirm increased sclerostin levels in MM compared to precursor disease states like Monoclonal Gammopathy of Undetermined Significance (MGUS) and smoldering MM. Furthermore, we found that a humanized MM xenograft mouse model bearing human MM cells (NOD-SCID.CB17 male mice injected intravenously with 2.5 million of MM1.S-Luc-GFP cells) demonstrated significantly higher concentrations of mouse-derived sclerostin, suggesting a microenvironmental source of sclerostin. Associated with the increased sclerostin levels, activated β-catenin expression levels were lower than normal in MM mouse bone marrow. Importantly, a high affinity grade scl-Ab reversed osteolytic bone disease in this animal model. Because scl-Ab did not demonstrate significant in vitro anti-MM activity, we combined it with the proteasome inhibitor, carfilzomib. Our data demonstrated that this combination therapy significantly inhibited tumor burden and improved bone disease in our in vivo MM mouse model. In agreement with our in vivo data, sclerostin expression was noted in marrow stromal cells and osteoblasts of MM patient BM samples. Moreover, MM cells stimulated sclerostin expression in immature osteoblasts while inhibiting osteoblast differentiation in vitro. This was in part regulated by Dkk-1 secreted by MM cells and is a potential mechanism contributing to the osteoblast dysfunction noted in MM.
Our data confirms the role of sclerostin as a potential therapeutic target in MM bone disease, and provides the rationale for studying scl-Ab combined with proteasome inhibitors in MM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.