735hardly imagine today's electronics industry, with its powerful, visually oriented design and automation tools, without having first established standard notations for circuit diagrams. Such was not the case in biology 2 . Despite the visual nature of much of the information exchange, the field was permeated with ad hoc graphical notations having little in common between different researchers, publications, textbooks and software tools. No standard visual language existed for describing biochemical interaction networks, inter-and intracellular signaling gene regulation-concepts at the core of much of today's research in molecular, systems and synthetic biology. The closest to a standard is the notation long used in many metabolic and signaling pathway maps, but in reality, even that lacks uniformity between sources and suffers from undesirable ambiguities (Fig. 1). Moreover, the existing tentative representations, however well crafted, were ambiguous, and only suitable for specific needs, such as representing metabolic networks or signaling pathways or gene regulation.The molecular biology era, and more recently the rise of genomics and other high-throughput technologies, have brought a staggering increase in data to be interpreted. It also favored the routine use of software to help formulate hypotheses, design experiments and interpret results. As a group of biochemists, modelers and computer scientists working in systems biology, we believe establishing standard graphical notations is an important step toward more efficient and accurate transmission of biological knowledge among our different communities. Toward this goal, we initiated the SBGN project in 2005, with the aim of developing and standardizing a systematic and unambiguous graphical notation for applications in molecular and systems biology. Historical antecedentsGraphical representation of biochemical and cellular processes has been used in biochemical textbooks as far back as sixty years ago 3 , reaching an apex in the wall charts hand drawn by Nicholson 4 and Michal 5 . Those graphs describe the processes that transform a set of inputs into a set of outputs, in effect being process, or state transition, diagrams. This style was emulated in the first database systems that depicted metabolic networks, including EMP 6 , EcoCyc 7 and KEGG 8 . More notations have been 'defined' by virtue of their implementation in specialized software tools such as pathway and network designers (e.g., NetBuilder 9 , Patika 10 , JDesigner 11 , CellDesigner 12 ). Those "Un bon croquis vaut mieux qu'un long discours" ("A good sketch is better than a long speech"), said Napoleon Bonaparte. This claim is nowhere as true as for technical illustrations. Diagrams naturally engage innate cognitive faculties 1 that humans have possessed since before the time of our cave-drawing ancestors. Little wonder that we find ourselves turning to them in every field of endeavor. Just as with written human languages, communication involving diagrams requires that authors and readers agr...
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction‐based models and packages that extend the core with features suited to other model types including constraint‐based models, reaction‐diffusion models, logical network models, and rule‐based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single‐cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.
Resistance to targeted cancer therapies such as trastuzumab is a frequent clinical problem not solely because of insufficient expression of HER2 receptor but also because of the overriding activation states of cell signaling pathways. Systems biology approaches lend themselves to rapid in silico testing of factors, which may confer resistance to targeted therapies. In this study, we aimed to develop a new kinetic model that could be interrogated to predict resistance to receptor tyrosine kinase (RTK) inhibitor therapies and directly test predictions in vitro and in clinical samples. The new mathematical model included RTK inhibitor antibody binding, HER2/HER3 dimerization and inhibition, AKT/mitogenactivated protein kinase cross-talk, and the regulatory properties of PTEN. The model was parameterized using quantitative phosphoprotein expression data from cancer cell lines using reverse-phase protein microarrays. Quantitative PTEN protein expression was found to be the key determinant of resistance to anti-HER2 therapy in silico, which was predictive of unseen experiments in vitro using the PTEN inhibitor bp(V). When measured in cancer cell lines, PTEN expression predicts sensitivity to anti-HER2 therapy; furthermore, this quantitative measurement is more predictive of response (relative risk, 3.0; 95% confidence interval, 1.6-5.5; P < 0.0001) than other pathway components taken in isolation and when tested by multivariate analysis in a cohort of 122 breast cancers treated with trastuzumab. For the first time, a systems biology approach has successfully been used to stratify patients for personalized therapy in cancer and is further compelling evidence that PTEN, appropriately measured in the clinical setting, refines clinical decision making in patients treated with anti-HER2 therapies. [Cancer Res 2009;69(16):6713-20]
BackgroundWith the ever increasing use of computational models in the biosciences, the need to share models and reproduce the results of published studies efficiently and easily is becoming more important. To this end, various standards have been proposed that can be used to describe models, simulations, data or other essential information in a consistent fashion. These constitute various separate components required to reproduce a given published scientific result.ResultsWe describe the Open Modeling EXchange format (OMEX). Together with the use of other standard formats from the Computational Modeling in Biology Network (COMBINE), OMEX is the basis of the COMBINE Archive, a single file that supports the exchange of all the information necessary for a modeling and simulation experiment in biology. An OMEX file is a ZIP container that includes a manifest file, listing the content of the archive, an optional metadata file adding information about the archive and its content, and the files describing the model. The content of a COMBINE Archive consists of files encoded in COMBINE standards whenever possible, but may include additional files defined by an Internet Media Type. Several tools that support the COMBINE Archive are available, either as independent libraries or embedded in modeling software.ConclusionsThe COMBINE Archive facilitates the reproduction of modeling and simulation experiments in biology by embedding all the relevant information in one file. Having all the information stored and exchanged at once also helps in building activity logs and audit trails. We anticipate that the COMBINE Archive will become a significant help for modellers, as the domain moves to larger, more complex experiments such as multi-scale models of organs, digital organisms, and bioengineering.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-014-0369-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.