The generation of induced pluripotent stem cells (iPSC) has enormous potential for the development of patient-specific regenerative medicine. Human embryonic stem cells (hESC) are able to defend their genomic integrity by maintaining low levels of reactive oxygen species (ROS) through a combination of enhanced removal capacity and limited production of these molecules. Such limited ROS production stems partly from the small number of mitochondria present in hESC; thus, it was important to determine that human iPSC (hiPSC) generation is able to eliminate the extra mitochondria present in the parental fibroblasts (reminiscent of ''bottleneck'' situation after fertilization) and to show that hiPSC have antioxidant defenses similar to hESC. We were able to generate seven hiPSC lines from adult human dermal fibroblasts and have fully characterized two of those clones. Both hiPSC clones express pluripotency markers and are able to differentiate in vitro into cells belonging to all three germ layers. One of these clones is able to produce fully differentiated teratoma, whereas the other hiPSC clone is unable to silence the viral expression of OCT4 and c-MYC, produce fully differentiated teratoma, and unable to downregulate the expression of some of the pluripotency genes during the differentiation process. In spite of these differences, both clones show ROS stress defense mechanisms and mitochondrial biogenesis similar to hESC. Together our data suggest that, during the reprogramming process, certain cellular mechanisms are in place to ensure that hiPSC are provided with the same defense mechanisms against accumulation of ROS as the hESC. STEM CELLS 2010;28:661-673 Disclosure of potential conflicts of interest is found at the end of this article.
Evolutionary theory predicts that cellular maintenance, stress defense, and DNA repair mechanisms should be most active in germ line cells, including embryonic stem cells that can differentiate into germ line cells, whereas it would be energetically unfavorable to keep these up in mortal somatic cells. We tested this hypothesis by examining telomere maintenance, oxidative stress generation, and genes involved in antioxidant defense and DNA repair during spontaneous differentiation of two human embryonic stem cell lines. Telomerase activity was quickly downregulated during differentiation, probably due to deacetylation of histones H3 and H4 at the hTERT promoter and deacetylation of histone H3 at hTR promoter. Telomere length decreased accordingly. Mitochondrial superoxide production and cellular levels of reactive oxygen species increased as result of increased mitochondrial biogenesis. The expression of major antioxidant genes was downregulated despite this increased oxidative stress. DNA damage levels increased during differentiation, whereas expression of genes involved in different types of DNA repair decreased. These results confirm earlier data obtained during mouse embryonic stem cell differentiation and are in accordance with evolutionary predictions. STEM CELLS 2008;26:455-464 Disclosure of potential conflicts of interest is found at the end of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.