The envelope glycoprotein, gp120, of human immunodeficiency virus type 1 (HIV‐1) binds the cellular protein CD4 with high affinity. By deletion we show that 62 N‐ and 20 C‐terminal residues along with the V1, V2 and V3 variable regions of gp 120 are unnecessary for CD4 binding. A 287 residue variant (ENV59), missing those 197 amino acids, binds to CD4 with high affinity. A polyclonal antibody failed to efficiently precipitate ENV59 which is consistent with the loss of immunodominant antigenic structures in the regions deleted. This suggests that ENV59 may have potential as an immunogen, able to elicit antibodies against more conserved regions of gp120. Additionally, complementing co‐expressed gp120 fragments as well as a circularly permuted molecule bind CD4, and suggest either that the molecular termini are adjacent in the folded structure, or that an N‐terminal region folds into the structure unconstrained by its method of attachment to the rest of the molecule.
We have investigated the mechanism by which the complement protease, Factor D, achieves its high specificity for the cleavage of Factor B in complex with C3(H2O). Kinetic experiments showed that Factor B and C3(H2O) associate with a KD of >/=2.5 microM and that Factor D acts on this complex with a second-order rate constant of kcat/KM >/= 2 x 10(6) M-1 s-1, close to the rate of a diffusion-controlled reaction for proteins of this size. In contrast, Factor D, which is a member of the trypsin family of serine proteases, was 10(3)-10(4)-fold less active than trypsin toward both thioester and p-nitroanilide substrates containing an arginine at P1. Furthermore, peptides spanning the Factor B cleavage site were not detectably cleaved by Factor D (kcat/KM = 0.5 M-1 s-1). These results imply that contacts between Factor D and the C3(H2O)B complex, outside the vicinity of the cleavage site in Factor B, generate >/=9 kcal/mol of binding energy to stabilize the transition state for reaction. In support of this, we demonstrate that chemical modification of Factor D at a single lysine residue that is distant from the active site abolishes the activity of the enzyme toward Factor B while not affecting activity toward small synthetic substrates. We propose that Factor D may exemplify a special case of the induced fit mechanism in which the requirement for conformational activation of the enzyme results in a substantial increase in substrate specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.