HeLa, Vero, L, HEp2, and MDBK cells respond immediately to 0.2–0.5 µg/ml cytochalasin D (CD) with sustained contraction (contracture), loss of microvilli, expression of endoplasmic contents (zeiosis), nuclear protrusion, and extension of cytoplasmic processes. The development of these changes is depicted, and the dose-response patterns in these cell lines are described. MDBK is generally most resistant and HeLa most sensitive to these effects of CD. Cells in G1 are most sensitive to CD; responsiveness decreases progressively during early S and is least in mid S through G2. CD inhibits transport of [14C]deoxyglucose in HeLa by about 45% but has no significant effect on hexose uptake in Vero and MDBK; sugar transport is thus apparently unrelated to any morphologic effect of CD. Although spreading and attachment are impeded, CD does not decrease and may even enhance the adhesiveness of established monolayers. Contraction appears to be a primary early effect of CD, upon which other visible changes follow. It is prevented by some inhibitors of energy metabolism (deoxyglucose and dinitrophenol) and does not occur in glycerinated models without ATP. The possible bases of the contractile response to CD are discussed. Although direct or indirect action of CD on some microfilaments may occur, a generalized structural disruption of contractile filaments by CD is considered unlikely.
An isolate of Botrytis cinerea (strain 61-34) constitutively expresses substantial amounts of extracellular laccase on a defined growth medium. The enzyme has been purified to homogeneity by a facile operational sequence, the last stage of which involves hydrophobic interaction chromatography. By these means, over 80 mg of laccase liter ؊1 can be obtained from aerated fermentor reaction broths. The enzyme, with an estimated M r of 74,000 and pI of 4.0, is a monomeric glycoprotein containing 49% carbohydrate predominantly as hexose. With 2,6-dimethoxyphenol, it exhibits a pH optimum of 3.5 and a temperature optimum of 60؇C, and its K m is 100 M. The purified enzyme with this substrate has a specific activity of 9.1 mkat mg of protein ؊1. Taken together with a broad substrate range and its stability in 4% sodium dodecyl sulfate or 2 M urea solutions, several biotechnology transfers are suggested.
Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (P(3HB-co-3HV)) copolymers were prepared via shake-flask fermentations of Burkholderia cepacia (formerly Pseudomonas cepacia) containing 2.2% (w/v) xylose and concentrations of levulinic acid ranging from 0.07% to 0.67% (w/v). Periodic harvest of shake-flask cultures from 48 to 92 h post-inoculation yielded 4.4-5.3 g/L of dry cell biomass, containing 42-56% (w/w) P(3HB-co-3HV), with optimal product yield occurring between 66 and 74 h. Growth and PHA accumulation enhancement were observed with concentrations of levulinic acid from 0.07 to 0.52% (w/v), producing dry cell biomass and P(3HB-co-3HV) yields of 9.5 and 4.2 g/L, respectively, at the 0.52% (w/v) concentration of levulinic acid. Representative samples were subjected to compositional analysis by 300 MHz 1H and 150 MHz 13C NMR, indicating that these random copolymers contained between 0.8 and 61 mol % 3-hydroxyvalerate (3HV). Solvent-cast film samples were characterized by differential scanning calorimetry, which demonstrated melting temperatures (Tm) to decrease in a pseudoeutectic fashion from 174.3 degrees C (0.8 mol % 3HV) to a minimum of 154.2 degrees C (25 mol % 3HV) and the glass transition temperatures (Tg) to decrease linearly from 2.1 to -11.9 degrees C as a function of increasing mol % 3HV. Thermogravimetric analysis of the copolymer series showed the temperature for onset of thermal decomposition (T(decomp)) to vary as a function of mol % 3HV from 273.4 to 225.5 degrees C. Intrinsic viscosities (eta) varied from 3.2 to 5.4 dL/g, as determined by dilute solution viscometry. Viscosity average molecular weights (Mv) of the copolymers were determined to range from 469 to 919 kDa, indicating that these P(3HB-co-3HV) copolymers are of sufficient molecular mass for commercial application.
We describe the construction of enzymatic nanoreactors through noncovalent envelopment of a glycoprotein by amphiphilic linear-dendritic AB or ABA copolymers. The synthetic procedure is based on the regioselective adsorption of dendritic poly(benzyl ether)-block-linear poly(ethylene glycol)-block-dendritic poly(benzyl ether) or linear poly(ethylene oxide)-block-dendritic poly(benzyl ether) copolymers onto the oxidative enzyme laccase from Trametes versicolor in aqueous medium. The complexes formed have improved catalytic activity compared with the native enzyme (77-85 nkat/mL vs 60 nkat/mL, respectively) and are more stable at elevated temperatures up to 70 degrees C. Experiments with deglycosylated laccase confirm that the glycoside fragments in the native enzyme serve as the anchor sites for the linear-dendritic copolymers. The enzymatic nanoreactors are able to effectively oxidize series of substrates: phenolic compounds (syringaldazine) and hydrophobic polyaromatic hydrocarbons (anthracene and benzo[a]pyrene) under "green" chemistry conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.