We report the results of a preclinical evaluation of recently introduced commercial tools for 3D patient IMRT/VMAT dose reconstruction, the Delta4 Anatomy calculation algorithm. Based on the same initial measurement, volumetric dose can be reconstructed in two ways. Three‐dimensional dose on the Delta4 phantom can be obtained by renormalizing the planned dose distribution by the measurement values (D4 Interpolation). Alternatively, incident fluence can be approximated from the phantom measurement and used for volumetric dose calculation on an arbitrary (patient) dataset with a pencil beam algorithm (Delta4 PB). The primary basis for comparison was 3D dose obtained by previously validated measurement‐guided planned dose perturbation method (ACPDP), based on the ArcCHECK dosimeter with 3DVH software. For five clinical VMAT plans, D4 Interpolation agreed well with ACPDP on a homogeneous cylindrical phantom according to gamma analysis with local dose‐error normalization. The average agreement rates were 98.2%±1.3% (1 SD), (range 97.0%‐100%) and 92.8%±3.9% (89.5%‐99.2%), for the 3%/3 mm and 2%/2 mm criteria, respectively. On a similar geometric phantom, D4 PB demonstrated substantially lower agreement rates with ACPDP: 88.6%±6.8% (81.2%‐96.1%) and 72.4%±8.4% (62.1%‐81.1%), for 3%/3 mm and 2%/2 mm, respectively. The average agreement rates on the heterogeneous patients' CT datasets are lower yet: 81.2%±8.6% (70.4%‐90.4%) and 64.6%±8.4% (56.5%‐74.7%), respectively, for the same two criteria sets. For both threshold combinations, matched analysis of variance (ANOVA) multiple comparisons showed statistically significant differences in mean agreement rates (p<0.05) for D4 Interpolation versus ACPDP on one hand, and D4 PB versus ACPDP on either cylindrical or patient dataset on the other hand. Based on the favorable D4 Interpolation results for VMAT plans, the resolution of the reconstruction method rather than hardware design is likely to be responsible for D4 PB limitations.PACS number: 87.55Qr
Objective: Two benefits of MR-guided radiotherapy (MRgRT) are the ability to track target structures while treatment is being delivered and the ability to adapt plans daily for some lesions based on changing anatomy. These unique capacities come at two costs: increased capital for acquisition and greatly decreased workflow. An adaptive gated stereotactic body radiotherapy (MRgART) treatment routinely takes ~90 min to perform and requires the presence of both a physician and a physicist. This may significantly limit daily capacity. We previously described how “simple cases” were necessary for proton facilities to allow for debt management. In this manuscript, we seek to determine the optimal scheduling of different MRgRT plans to recoup capital costs. Materials/Methods: We assumed an MR-linac (MRL) was completely scheduled with patients over workdays of varying duration. Treatment times and reimbursement data from our facility for varying complexities of patients were extrapolated for varying numbers treated daily. We then derived the number of adaptive and non-adaptive patients required daily to optimize the schedules. HOPPS data were used to model reimbursement. Results: A single MRL treating 14 non-gated, non-adaptive IMRT patients over an 8 h workday would take about 4.8 years to cover initial acquisition and installation costs. However, such patients may be more quickly and efficiently treated with a conventional linear accelerator, while MRgART cases may only be treated with an MRL. By treating four of these daily, that same MRL room would cover costs in 2.4 years. Personnel, maintenance costs, and profit further complicate any business case for treating non-adaptive patients or for extending hours. Conclusions: In our previously published paper discussing proton therapy, we noted that debt is not variable with capacity; this remains true with MRgRT. Different from protons, a clinically optimal case load of adaptive patients provides an optimal business case as well. This requires a large patient cadre to ensure continuing throughput. As improvements in MRgRT are brought to the clinic, shorter adaptive and non-adaptive treatment times will help improve the timeframe to recoup costs but will require even more appropriate patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.