Antimicrobial peptides (AMPs) have been recognized for their ability to target processes important for biofilm formation. Given the vast array of AMPs, identifying potential anti-biofilm candidates remains a significant challenge, and prompts the need for preliminary in silico investigations prior to extensive in vitro and in vivo studies. We have developed Biofilm-AMP (B-AMP), a curated 3D structural and functional repository of AMPs relevant to biofilm studies. In its current version, B-AMP contains predicted 3D structural models of 5544 AMPs (from the DRAMP database) developed using a suite of molecular modeling tools. The repository supports a user-friendly search, using source, name, DRAMP ID, and PepID (unique to B-AMP). Further, AMPs are annotated to existing biofilm literature, consisting of a vast library of over 10,000 articles, enhancing the functional capabilities of B-AMP. To provide an example of the usability of B-AMP, we use the sortase C biofilm target of the emerging pathogen Corynebacterium striatum as a case study. For this, 100 structural AMP models from B-AMP were subject to in silico protein-peptide molecular docking against the catalytic site residues of the C. striatum sortase C protein. Based on docking scores and interacting residues, we suggest a preference scale using which candidate AMPs could be taken up for further in silico, in vitro and in vivo testing. The 3D protein-peptide interaction models and preference scale are available in B-AMP. B-AMP is a comprehensive structural and functional repository of AMPs, and will serve as a starting point for future studies exploring AMPs for biofilm studies. B-AMP is freely available to the community at https://b-amp.karishmakaushiklab.com and will be regularly updated with AMP structures, interaction models with potential biofilm targets, and annotations to biofilm literature.
Antibiotic resistance is a public health threat, and the rise of multidrug-resistant bacteria, including those that form protective biofilms, further compounds this challenge. Antimicrobial peptides (AMPs) have been recognized for their anti-infective properties, including their ability to target processes important for biofilm formation. However, given the vast array of natural and synthetic AMPs, determining potential candidates for anti-biofilm testing is a significant challenge. In this study, we present an in silico approach, based on open-source tools, to identify AMPs with potential anti-biofilm activity. This approach is developed using the sortase-pilin machinery, important for adhesion and biofilm formation, of the multidrug-resistant, biofilm-forming pathogen C. striatum as the target. Using homology modeling, we modeled the structure of the C. striatum sortase C protein, resembling the semi-open lid conformation adopted during pilus biogenesis. Next, we developed a structural library of 5544 natural and synthetic AMPs from sequences in the DRAMP database. From this library, AMPs with known anti-Gram positive activity were filtered, and 100 select AMPs were evaluated for their ability to interact with the sortase C protein using in-silico molecular docking. Based on interacting residues and docking scores, we built a preference scale to categorize candidate AMPs in order of priority for future in vitro and in vivo biofilm studies. The considerations and challenges of our approach, and the resources developed, which includes a search-enabled repository of predicted AMP structures, and protein-peptide interaction models relevant to biofilm studies (B-AMP), can be leveraged for similar investigations across other biofilm targets and biofilm-forming pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.