Young maize ( Zea mays L., Poaceae) plants were grown in a complete, well-oxygenated nutrient solution and then deprived of their external source of sulphate. This treatment induced the formation of aerenchyma in roots. In addition to the effect of sulphate starvation on root anatomy, the presence and location of superoxide anions and hydrogen peroxide, and changes in calcium and pH were examined. By day 6 of sulphate deprivation, aerenchyma started to form in the roots of plants and the first aerenchymatous spaces were apparent in the middle of the cortex. S-starvation also induced thickening of the cell walls of the endodermis. Active oxygen species appeared in groups of intact mid-cortex cells. Formation of superoxide anion and hydrogen peroxide was found in degenerating cells of the mid-cortex. Very few nuclei in the cortex of S-starved roots fluoresced, being shrunken and near to the cell wall. By day 12 of S-deprivation, a fully developed aerenchyma was apparent and there were only a few 'chains' of cells bridging hypodermis to endodermis and stele of roots. Cell walls of endodermis of S-starved roots increased 68% in thickness. Intensive fluorescence in the cell walls of the endodermal, hypodermal and to a lesser extent of epidermal cells was observed due to the formation of active oxygen species, while there was no fluorescence in the cortical cells. There was a higher Ca concentration in the cells walls of the endodermis and epidermis, compared to the rest of the S-starved root tissues. A higher pH was observed, mainly in the cell walls of the hypodermis and to a lesser extent in the cell walls of the endodermis. Superoxide anion and hydrogen peroxide was found in degenerating cells of the root cortex. There was no fluorescence of nuclei in the cortex of S-starved roots.
Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation.
Nicotianamine is an essential molecule for Fe homeostasis in plants, its primary precursor is the S-containing compound methionine, and it is biosynthesized by the enzyme family of nicotianamine synthases (NASs). In maize, a graminaceous plant that follows Strategy II for Fe uptake, ZmNAS genes can be subgrouped into two classes, according to their roles and tissue specific expression profiles. In roots, the genes of class I provide NA for the production of deoxymugineic acid (DMA), which is secreted to the rhizosphere and chelates Fe(III). The Fe(III)-DMA complex is then inserted to the root via a ZmYS1 transporter. The genes of class II provide NA for local translocation and detoxification of Fe in the leaves. Due to the connection between S and Fe homeostasis, S deficiency causes Fe deprivation responses to graminaceous plants and when S is supplied, these responses are inverted. In this study, maize plants were grown in pots with sterile river sand containing FePO4 and were inoculated with the mycorrhizal fungus Rhizophagus irregularis. The plants were grown under S deficient conditions until day 60 from sowing and on that day sulfate was provided to the plants. In order to assess the impact of AM symbiosis on Fe homeostasis, the expression patterns of ZmNAS1, ZmNAS3 (representatives of ZmNAS class I and class II), and ZmYS1 were monitored before and after S supply by means of real time RT-PCR and they were used as indicators of the plant Fe status. In addition, total shoot Fe concentration was determined before and after S supply. AM symbiosis prevented Fe deprivation responses in the S deprived maize plants and iron was possibly provided directly to the mycorrhizal plants through the fungal network. Furthermore, sulfate possibly regulated the expression of all three genes revealing its potential role as signal molecule for Fe homeostasis.
Nitrate (N), phosphate (P) or sulphate (S) deprivation causes aerenchyma formation in maize (Zea mays L.) nodal roots. The exact mechanisms that trigger the formation of aerenchyma under these circumstances are unclear. We have compared aerenchyma distribution across the nodal roots of first whorl (just emerging in 10-day-old seedlings), which were subject to S, N or P deprivation over a period of 10 days in connection with oxygen consumption, ATP concentration, cellulase and polygalacturonase activity in the whole root. The effect of deprivation on aerenchyma formation was examined using light and electron microscopy, along with in situ detection of calcium and of reactive oxygen species (ROS) by fluorescence microscopy. Aerenchyma was not found in the root base regardless of the deprivation. Programmed cell death (PCD) was observed near the root tip, either within the first two days (-N) or a few days later (-S, -P) of the treatment. Roots at day 6 under all three nutrient-deprived conditions showed signs of PCD 1 cm behind the cap, whereas only N-deprived root cells 0.5 cm behind the cap showed severe ultrastructural alterations, due to advanced PCD. The lower ATP concentration and the higher oxygen consumptions observed at day 2 in N-, P- and S-deprived roots compared to the control indicated that PCD may be triggered by perturbations in energy status of the root. The peaks of cellulase activity located between days 3 (-N) and 6 (-P), along with the respective alterations in polygalacturonase activity, indicated a coordination which preceded aerenchyma formation. ROS and calcium seemed to contribute to PCD initiation, with ROS possessing dual roles as signals and eliminators. All the examined parameters presented both common features and characteristic variations among the deprivations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.