Fine particulate matter (PM) has significant impacts on public health. Among its various chemical components, Polycyclic Aromatic Hydrocarbons (PAHs) are of particular importance since they contribute to a large extent or even enhance its toxic potency. Despite the verified importance of the fine PM pollution for the Greater Athens Area (GAA), information on its composition with respect to the hydrocarbons is extremely scarce. This study aims to uncover the occurrence of the PM2.5 and PM1-bound PAHs across the GAA investigating the impact of the sources and meteorology on the configuration of their profile and potential health risk. The fieldwork took place at three different locations during two different mesoscale wind regimes. Using the Diagnostic PAHs’ Ratio method, the sources were identified while for the quantification of the emissions from the traffic and central heating sectors, the FEI-GREGAA emission inventory was taken into consideration. The potential health risk was estimated calculating the toxic/mutagenic equivalency factors. The peaks for both the PM mass and the PAHs were attributed to the intensity of the emissions. On the other hand, the carcinogenic/mutagenic risk was mainly influenced by the varying characteristics of traffic and especially for the background atmosphere, from the arriving air masses from longer scale distances.
Despite the various reduction policies that have been implemented across Europe in the past few years, Particulate Matter (PM) exceedances continue to be recorded. Therefore, with the principal aim to clarify the complex association between emissions and fine particles levels, this work evaluates the impact of the anthropogenic contribution to the fine PM chemical profile. The fieldwork was conducted during March in 2008 and 2013 and covers the periods before and during the economic recession. The experimental data were analyzed in parallel with the emissions from the Flexible Emission Inventory for Greece and the Greater Athens Area (FEI-GREGAA). The differentiation of the mass closure results’ and the aerosols’ character is also discussed in combination with the calculated PM2.5-Air Quality Indexes. The peak in the PM load and the Particulate Organic Matter (POM) component was recorded in 2013, corresponding to the enhancement of the anthropogenic input. Although the monitoring location is traffic-impacted, the sector of heating, from both wood burning and fossil fuel, proved to be the driving force for the configuration of the obtained PM picture. Especially in 2013, its contribution was two times that of traffic. Finally, the low wind speed values led to the deterioration of the air quality, especially for the sensitive groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.