LVRR characterized approximately one-third of IDCM patients surviving 2 years while receiving optimal medical therapy and allowed a more accurate long-term prognostic stratification of the disease.
"Real-world" outcomes of BVS showed acceptable rates of TLF at six months, although the rates of early and midterm scaffold thrombosis, mostly clustered within 30 days, were not negligible.
Background
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited genetic myocardial disease characterized by fibrofatty replacement of the myocardium and a predisposition to cardiac arrhythmias and sudden death. We evaluated the cardiomyopathy gene titin (TTN) as a candidate ARVC gene because of its proximity to an ARVC locus at position 2q32 and the connection of the titin protein to the transitional junction at intercalated disks.
Methods and Results
All 312 titin exons known to be expressed in human cardiac titin and the complete 3’ untranslated region were sequenced in 38 ARVC families. Eight unique TTN variants were detected in 7 families including a prominent Thr2896Ile mutation that showed complete segregation with the ARVC phenotype in one large family. The Thr2896IIe mutation maps within a highly conserved immunoglobulin-like fold (Ig10 domain), located in titin’s spring region. Native gel electrophoresis, NMR, intrinsic fluorescence, and proteolysis assays of wildtype and mutant Ig10 domains revealed that the Thr2896IIe exchange reduces the structural stability and increases the propensity towards degradation of the Ig10 domain. The phenotype of TTN variant carriers was characterized by history of sudden death (5/7 families), progressive myocardial dysfunction causing death or heart transplant (8/14 cases), frequent conduction disease (11/14), and incomplete penetrance (86%).
Conclusions
Our data provide evidence that titin mutations can cause ARVC, a finding that further expands the origin of the disease beyond desmosomal proteins. Structural impairment of the titin spring is a likely cause of ARVC and constitutes a novel mechanism underlying myocardial remodeling and sudden cardiac death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.