The aim of our study was to determine the impact of unsupervised Pulmonary Rehabilitation (uns-PR) on patients recovering from COVID-19, and determine its anthropometric, biological, demographic and fitness correlates. All patients (n = 20, age: 64.1 ± 9.9 years, 75% male) participated in unsupervised Pulmonary Rehabilitation program for eight weeks. We recorded anthropometric characteristics, pulmonary function parameters, while we performed 6 min walk test (6 MWT) and blood sampling for oxidative stress measurement before and after uns-PR. We observed differences before and after uns-PR during 6 MWT in hemodynamic parameters [systolic blood pressure in resting (138.7 ± 16.3 vs. 128.8 ± 8.6 mmHg, p = 0.005) and end of test (159.8 ± 13.5 vs. 152.0 ± 12.2 mmHg, p = 0.025), heart rate (5th min: 111.6 ± 16.9 vs. 105.4 ± 15.9 bpm, p = 0.049 and 6th min: 112.5 ± 18.3 vs. 106.9 ± 17.9 bpm, p = 0.039)], in oxygen saturation (4th min: 94.6 ± 2.9 vs. 95.8 ± 3.2%, p = 0.013 and 1st min of recovery: 97.8 ± 0.9 vs. 97.3 ± 0.9%), in dyspnea at the end of 6 MWT (1.3 ± 1.5 vs. 0.6 ± 0.9 score, p = 0.005), in distance (433.8 ± 102.2 vs. 519.2 ± 95.4 m, p < 0.001), in estimated O2 uptake (14.9 ± 2.4 vs. 16.9 ± 2.2 mL/min/kg, p < 0.001) in 30 s sit to stand (11.4 ± 3.2 vs. 14.1 ± 2.7 repetitions, p < 0.001)] Moreover, in plasma antioxidant capacity (2528.3 ± 303.2 vs. 2864.7 ± 574.8 U.cor., p = 0.027), in body composition parameters [body fat (32.2 ± 9.4 vs. 29.5 ± 8.2%, p = 0.003), visceral fat (14.0 ± 4.4 vs. 13.3 ± 4.2 score, p = 0.021), neck circumference (39.9 ± 3.4 vs. 37.8 ± 4.2 cm, p = 0.006) and muscle mass (30.1 ± 4.6 vs. 34.6 ± 7.4 kg, p = 0.030)] and sleep quality (6.7 ± 3.9 vs. 5.6 ± 3.3 score, p = 0.036) we observed differences before and after uns-PR. Our findings support the implementation of unsupervised pulmonary rehabilitation programs in patients following COVID-19 recovery, targeting the improvement of many aspects of long COVID-19 syndrome.
Obstructive Sleep Apnea Syndrome (OSAS) is a sleep disorder with high prevalence in general population, but alarmingly low in clinicians' differential diagnosis. We reviewed the literature on PubMed and Scopus from June 1980–2021 in order to describe the altered systematic pathophysiologic mechanisms in OSAS patients as well as to propose an exercise program for these patients. Exercise prevents a dysregulation of both daytime and nighttime cardiovascular autonomic function, reduces body weight, halts the onset and progress of insulin resistance, while it ameliorates excessive daytime sleepiness, cognitive decline, and mood disturbances, contributing to an overall greater sleep quality and quality of life.
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer’s disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Background: The assignment of mortality risk from SARS-CoV-2 virus (COVID-19) to vulnerable patient groups is an important step toward containment of the pandemic. Methods: A total of 760 patients with a positive molecular test for SARS-CoV-2 who were unvaccinated against COVID-19 were recruited between 1 January and 30 June 2021. Patients were grouped by age; sex; and common morbidities, such as atrial fibrillation, chronic respiratory disease, coronary disease, diabetes type II, neoplasia, hypertension and β-Thalassemia heterozygosity. As a primary endpoint, we assessed mortality risk from COVID-19, and as secondary endpoints, we considered clinical severity and need for Intense Care Unit (ICU) admission. Results: In multivariate analysis, male sex (p < 0.001, OR = 2.59), increasing age (p < 0.001, OR = 1.049), β-Thalassemia heterozygosity (p = 0.001, OR = 2.41) and chronic respiratory disease (p = 0.018, OR = 1.84) were identified as risk factors associated with mortality due to COVID-19. Moreover, male sex (p < 0.001, OR = 1.98), increasing age (p < 0.001, OR = 1.052) and β-Thalassemia heterozygosity (p = 0.001, OR = 2.59) were associated with clinical severity in logistic regression. Regarding ICU admission, the risk factors were identified as male sex (p = 0.002, OR = 1.99), chronic respiratory disease (p = 0.007, OR = 2.06) and hypertension (p < 0.001, OR = 5.81). Conclusions: An increased mortality risk from COVID-19 was observed for older age, male sex, β-Thalassemia heterozygosity and respiratory disease. Carriers of β-Thalassemia were identified as more vulnerable for severe clinical symptomatology, but there was no increased possibility for ICU admission. Readjustment of these findings to consider impacts of variant strains prevailing during the latest viral outbreak among vulnerable patient groups may offer timely relief from the pandemic.
BACKGROUND & OBJECTIVE: To quantify the hemodynamic and thrombotic effect of COVID-19 on the eye microcirculation of patients with thromboprophylaxis, shortly after hospital discharge. METHODS: This case-control study included 17 COVID-19 survivors (named “COVID-19 Group”) and 17 healthy volunteers (named “Control Group”). Axial blood velocity (Vax) and percentage of occluded vessels (POV) were quantified by Conjunctival Video Capillaroscopy (CVC). Microvessels were identified and classified as “capillaries” (CAP), “postcapillary venules of size 1” (PC1), and “postcapillary venules of size 2” (PC2). RESULTS: The COVID-19 Group did not differ significantly in basic demographics from the Control Group. In the COVID-19 Group, there was a statistically significant (p < 0.001) reduction of Vax (39%, 49% and 47%, for CAP, PC1, and PC2, respectively) in comparison to the Control Group and a sizeable (p < 0.001) increase of POV (600%) in comparison to the Control Group. CONCLUSIONS: COVID-19 not only reduces significantly axial blood velocity in the capillaries and postcapillary venules of the eye but has also a devastating effect on microthrombosis (POV) despite thromboprophylaxis treatment. This gives a possible explanation for long COVID and a hint about the existence of a possibly unknown coagulation factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.