Palygorskite sample (Pal) underwent thermal treatment at 400 °C (T-Pal) to be used as adsorbent for the removal of 200 mg NH4+-N/L from artificial solution. After thermal treatment, the sample was characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM). For NH4+-N removal, T-Pal was added as a bed matrix in fixed-bed reactor experiments and the effect of flow rate was determined. It was indicated that with the flow rate increase from 10 mL/min to 50 mL/min, fewer liters of the solution were purified, rendering a longer residual time of interactions, which is optimal for NH4+-N removal from T-Pal. The maximum removed amount was calculated at 978 mg NH4+-N (qtotal), suggesting T-Pal is a promising ammonium adsorbent. The data of kinetic experiments were applied to Clark, Yoon–Nelson, and Thomas kinetic models, with Clark having the best fit, highlighting a heterogenous adsorption. At the end of kinetic experiments, T-Pal applied in hydroponic cultivations and presented a sufficient release rate, which was found utilizable for saturated T-Pal usage as N fertilizer that satisfactory results were deemed concerning lettuces characteristics and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.