Abstract-Modern vehicles are no longer mere mechanical devices; they comprise dozens of digital computing platforms, coordinated by an in-vehicle network, and have the potential to significantly enhance the digital life of individuals on the road. While this transformation has driven major advancements in road safety and transportation efficiency, significant work remains to be done to support the security and privacy requirements of the envisioned ecosystem of commercial services and applications (i.e., Internet access, video streaming, etc.). In the era when "service is everything and everything is a service", Vehicular Communication (VC) systems cannot escape from this ongoing trend towards multi-service environments accessible from anywhere. To meet the diverse requirements of vehicle operators and Service Providers (SPs), we present SEROSA, a service-oriented security and privacy-preserving architecture for VC. By synthesizing existing VC standards and Web Services (WS), our architecture provides comprehensive identity and service management while ensuring interoperability with existing SPs. We fully implement our system and extensively assess its efficiency, practicality, and dependability. Overall, SEROSA significantly extends the state of the art and serves as a catalyst for the integration of vehicles into the vast domain of Internet-based services.
Recent advances in sensing, computing, and networking have paved the way for the emerging paradigm of Mobile Crowd Sensing (MCS). The openness of such systems and the richness of data MCS users are expected to contribute to them raise significant concerns for their security, privacypreservation and resilience. Prior works addressed different aspects of the problem. But in order to reap the benefits of this new sensing paradigm, we need a holistic solution. That is, a secure and accountable MCS system that preserves user privacy, and enables the provision of incentives to the participants. At the same time, we are after a MCS architecture that is resilient to abusive users and guarantees privacy protection even against multiple misbehaving and intelligent MCS entities (servers). In this work, we meet these challenges and propose a comprehensive security and privacy-preserving architecture. With a full blown implementation, on real mobile devices, and experimental evaluation we demonstrate our system's efficiency, practicality, and scalability. Last but not least, we formally assess the achieved security and privacy properties. Overall, our system offers strong security and privacy-preservation guarantees, thus, facilitating the deployment of trustworthy MCS applications.
Increasing smartphone penetration, combined with the wide coverage of cellular infrastructures, renders smartphonebased traffic information systems (TISs) an attractive option. The main purpose of such systems is to alleviate traffic congestion that exists in every major city. Nevertheless, to reap the benefits of smartphone-based TISs, we need to ensure their security and privacy and their effectiveness (e.g., accuracy). This is the motivation of this paper: We leverage state-of-the-art cryptographic schemes and readily available telecommunication infrastructure. We present a comprehensive solution for smartphone-based traffic estimation that is proven to be secure and privacy preserving. We provide a full-blown implementation on actual smartphones, along with an extensive assessment of its accuracy and efficiency. Our results confirm that smartphone-based TISs can offer accurate traffic state estimation while being secure and privacy preserving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.