Popular music is often composed of an accompaniment and a lead component, the latter typically consisting of vocals. Filtering such mixtures to extract one or both components has many applications, such as automatic karaoke and remixing. This particular case of source separation yields very specific challenges and opportunities, including the particular complexity of musical structures, but also relevant prior knowledge coming from acoustics, musicology or sound engineering. Due to both its importance in applications and its challenging difficulty, lead and accompaniment separation has been a popular topic in signal processing for decades. In this article, we provide a comprehensive review of this research topic, organizing the different approaches according to whether they are model-based or data-centered. For model-based methods, we organize them according to whether they concentrate on the lead signal, the accompaniment, or both. For data-centered approaches, we discuss the particular difficulty of obtaining data for learning lead separation systems, and then review recent approaches, notably those based on deep learning. Finally, we discuss the delicate problem of evaluating the quality of music separation through adequate metrics and present the results of the largest evaluation, to-date, of lead and accompaniment separation systems. In conjunction with the above, a comprehensive list of references is provided, along with relevant pointers to available implementations and repositories.
Singing voice separation based on deep learning relies on the usage of time-frequency masking. In many cases the masking process is not a learnable function or is not encapsulated into the deep learning optimization. Consequently, most of the existing methods rely on a post processing step using the generalized Wiener filtering. This work proposes a method that learns and optimizes (during training) a source-dependent mask and does not need the aforementioned post processing step. We introduce a recurrent inference algorithm, a sparse transformation step to improve the mask generation process, and a learned denoising filter. Obtained results show an increase of 0.49 dB for the signal to distortion ratio and 0.30 dB for the signal to interference ratio, compared to previous state-of-the-art approaches for monaural singing voice separation.
Monaural singing voice separation task focuses on the prediction of the singing voice from a single channel music mixture signal. Current state of the art (SOTA) results in monaural singing voice separation are obtained with deep learning based methods. In this work we present a novel deep learning based method that learns long-term temporal patterns and structures of a musical piece. We build upon the recently proposed Masker-Denoiser (MaD) architecture and we enhance it with the Twin Networks, a technique to regularize a recurrent generative network using a backward running copy of the network. We evaluate our method using the Demixing Secret Dataset and we obtain an increment to signal-to-distortion ratio (SDR) of 0.37 dB and to signal-to-interference ratio (SIR) of 0.23 dB, compared to previous SOTA results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.