The present paper deals with the development of a multi-purpose floating tension leg platform (TLP) concept suitable for the combined offshore wind and wave energy resources exploitation, taking into account the prevailing environmental conditions at selected locations along the European coastline. The examined Renewable Energy Multi-Purpose Floating Offshore System (REFOS) platform encompasses an array of hydrodynamically interacting oscillating water column (OWC) devices, moored through tensioned tethers as a TLP platform supporting a 10 MW wind turbine (WT). The system consists of a triangular platform supported by cylindrical floaters, with the WT mounted at the deck’s center and the cylindrical OWC devices at its corners. Details of the modelling of the system are discussed and hydro-aero-elastic coupling between the floater; the mooring system; and the WT is presented. The analysis incorporates the solutions of the diffraction; the motion- and the pressure-dependent radiation problems around the moored structure, along with the aerodynamics of the WT into an integrated design approach validated through extensive experimental hydrodynamic scaled-down model tests. The verified theoretical results attest to the importance of the WT loading and the OWC characteristics on the dynamics of the system.
This paper summarizes the coupled hydro-aero-elastic analysis of a multi-purpose floating structure suitable for offshore wind and wave energy exploitation. The analysis incorporates properly the solutions of the diffraction and the pressure- and motion- dependent radiation problems around the floating structure and the aerodynamics of a 5 MW Wind Turbine (WT). Finite water depths are considered, the structure being floating under the action of regular surface waves. The platform encompasses three hydrodynamically interacting Oscillating Water Column (OWC) devices consisting of concentric vertical cylinders, moored through tensioned tethers in a TLP concept. Details concerning the numerical and experimental modelling of the system are presented and the numerical results are compared against experimental data.
The present work describes a simplified Computational Fluid Dynamics (CFD) approach in order to calculate the propulsive performance of a ship moving at steady forward speed in head seas. The proposed method combines experimental data concerning the added resistance at model scale with full scale Reynolds Averages Navier–Stokes (RANS) computations, using an in-house solver. In order to simulate the propeller performance, the actuator disk concept is employed. The propeller thrust is calculated in the time domain, assuming that the total resistance of the ship is the sum of the still water resistance and the added component derived by the towing tank data. The unsteady RANS equations are solved until self-propulsion is achieved at a given time step. Then, the computed values of both the flow rate through the propeller and the thrust are stored and, after the end of the examined time period, they are processed for calculating the variation of Shaft Horsepower (SHP) and RPM of the ship’s engine. The method is applied for a bulk carrier which has been tested in model scale at the towing tank of the Laboratory for Ship and Marine Hydrodynamics (LSMH) of the National Technical University of Athens (NTUA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.