The antibiotics have attracted global attentions for their impact on aquatic ecosystem. The knowledge about the fate of antibiotics encountering extracellular polymeric substances (EPS) is, however, limited. In this study, we investigated the interacting mechanisms of tetracycline (TC) to EPS extracted from aerobic activated sludge. The contributions of the main components of EPS, extracellular proteins, and polysaccharides were evaluated using bovine serum albumin and alginate sodium, respectively. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nuclear magnetic resonance indicated that hydroxyl, carboxyl, and amino groups were the domain chemical groups involved in the interaction between TC and EPS, and the binding of TC onto EPS changed the structure of these chemical groups, thus causing shifts in their UV-visible absorption spectra. In addition, we found that extracellular proteins, rather than polysaccharides, were the major active contents involved in the interaction. Three-dimensional excitation-emission matrix fluorescence spectroscopy showed that the fluorophores in EPS were clearly quenched by TC and the static quenching process was observed, implying the complex formation of TC and EPS. Furthermore, thermodynamic analysis indicated that the binding of TC with EPS is spontaneous and dominated by electrostatic forces.
Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid–base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.