Discriminative dictionary learning (DDL) has recently gained significant attention due to its impressive performance in various pattern classification tasks. However, the locality of atoms is not fully explored in conventional DDL approaches which hampers their classification performance. In this paper, we propose a locality constraint dictionary learning with support vector discriminative term (LCDL-SV), in which the locality information is preserved by employing the graph Laplacian matrix of the learned dictionary. To jointly learn a classifier during the training phase, a support vector discriminative term is incorporated into the proposed objective function. Moreover, in the classification stage, the identity of test data is jointly determined by the regularized residual and the learned multi-class support vector machine. Finally, the resulting optimization problem is solved by utilizing the alternative strategy. Experimental results on benchmark databases demonstrate the superiority of our proposed method over previous dictionary learning approaches on both hand-crafted and deep features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.