To study the effect of high temperature on the dynamic mechanical properties and energy evolution characteristic of limestone specimens, the basic physical parameters of limestone specimens that cool naturally after experiencing high temperatures of room temperature (25°C), 200°C, 400°C, and 600°C were tested. In addition, compression tests with 6 impact loading conditions were conducted using SHPB device. The changes of basic physical properties of limestone before and after temperature were analyzed, and the relationship among dynamic characteristic parameters, energy evolution characteristics, and temperature was discussed. Test results indicated that, with the increase of temperature, the surface color of specimen changed from gray-black to gray-white, and its volume increased, while the mass, density, and P-wave velocity of specimen decreased. The dynamic compressive stress-strain curve of limestone specimens after different high-temperature effects could be divided into three stages: elasticity stage, yield stage, and failure stage. Failure mode of specimen was in the form of spalling axial splitting, and the degree of fragmentation increased with the increase of the temperature and incident energy. With the increase of the temperature, the reflection energy, the absorption energy, the dynamic compressive strength, and dynamic elastic modulus of rock decreased, while its transmission energy, the dynamic peak strain, and strain rate increased. The dynamic compressive strength, dynamic elastic modulus, dynamic strain, and strain rate of limestone specimens all increased with the increase of incident energy, showing a quadratic function relationship.
The tensile failure of rocks is a common failure mode in rock engineering. Many studies have been conducted on the tensile strength and failure mode of rocks after high-temperature treatment under dynamic loading. However, research on the effects of high temperature on the dynamic splitting tensile characteristics of sandstone at actual high temperatures is lacking. To investigate the dynamic tensile characteristics of rocks at actual high temperatures, split Hopkinson pressure bar (SHPB) test apparatus and high-temperature environment box were used to perform dynamic splitting tensile tests under six striker velocities for sandstone specimens at 25°C–800°C. The dynamic splitting tensile strength, radial strain, average strain rate, and failure mode of sandstone under different test conditions were investigated. Test results revealed that the brittleness of sandstone specimens is enhanced at 200°C and 400°C, but slight ductility is observed at 600°C and 800°C. The strain rate effect of dynamic tensile strength is closely related to temperature. When the striker velocity exceeds 2.3 m/s, the dynamic radial strain first decreases and then increases with rising temperature. A quadratic polynomial relationship between the dynamic radial strain and temperature was observed. The temperature effect on the average strain rate is strong at low striker velocity and weak at high striker velocity. In the dynamic splitting tensile tests, high-temperature sandstone specimens are split into two semicylinders along the radial loading direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.