Water environment pollution due to chemical spills occurs constantly worldwide. When a chemical accident occurs, a quick initial response is most important. In previous studies, samples collected from chemical accident sites were subjected to laboratory-based precise analysis or predictive research through modeling. These results can be used to formulate appropriate responses in the event of chemical accidents; however, there are limitations to this process. For the initial response, it is important to quickly acquire information on chemicals leaked from the site. In this study, pH and electrical conductivity (EC), which are easy to measure in the field, were applied. In addition, 13 chemical substances were selected, and pH and EC data for each were established according to concentration change. The obtained data were applied to machine learning algorithms, including decision trees, random forests, gradient boosting, and XGBoost (XGB), to determine the chemical substances present. Through performance evaluation, the boosting method was found to be sufficient, and XGB was the most suitable algorithm for chemical substance detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.