Overhead lines that are exposed to the outdoors are susceptible to faults such as open conductors on weak points and disconnection caused by external factors such as typhoons. Arcs that occur during disconnection generate energy at a high heat of over 10,000 °C, requiring swift fault shut-off. However, most conventional fault detection methods to protect electrical power systems detect an overcurrent; thus, they can only detect faults after the line is disconnected and the cross-section of the line that generates the arc discharge makes contact with another line or the ground, causing a high risk of fire. Furthermore, in the case of ground faults owing to the disconnection of overhead lines, the load and the grounding impedance are not parallel. Therefore, in the case of the fault current not exceeding the threshold or a high impedance fault due to the high grounding impedance of the surrounding environment, such as grass or trees, it is difficult to determine overhead line faults with conventional fault detection methods. To solve these issues, this paper proposes an AI-based open conductor fault detection method on overhead lines that can clear the fault before the falling open conductor line comes into contact with the ground’s surface so as to prevent fire. The falling time according to the height and span of the overhead line was calculated using a falling conductor model for the overhead line, to which the pendulum motion was applied. The optimal input data cycle that enables fault detection before a line–ground fault occurs was derived. For artificial intelligence learning to prevent wildfires, the voltage and current signals were collected through a total of 432 fault simulations and were wavelet-transformed with a deep neural network to verify the method. The proposed total scheme was simulated and verified with MATLAB.
Recently, because of the increase in the number of connections to Distributed Generation (DG), the problem of lowering voltage stability in the distribution system has become an issue. Reactive power compensators, such as Static Synchronous Compensators (STATCOM), may be used to solve the problem of voltage stability degradation. However, because of the complexity of the distribution system, it is very difficult to select the installation location for STATCOM. Furthermore, when installed in the wrong location, economical efficiency and availability problems may occur. This paper proposes a Virtual STATCOM Configuration and Control method that would operate like a single STATCOM based on multiple DGs connected to the system. The proposed Virtual STATCOM has the merit of being economical by using existing facilities without adding new power facilities, and it solves the problem of the difficulty of selecting the installation location because of the complexity of the distribution system. In addition, while the conventional STATCOM uses an independent control method in consideration of the power quality of the access point, the Virtual STATCOM performs the Point of Common Coupling (PCC) power quality compensation using the integrated control of multiple DGs connected to the system. In the proposed method, the Virtual STATCOM integrated control algorithm is configured by adopting linear programming, and the compensation is performed while considering the distance between DG and PCC, the inverter’s rated capacity, and the power generation. The performance of the Virtual STATCOM power quality compensation was verified using MATLAB/SIMULINK and Real Time Simulator (OPAL-RT).
Thyristor Controlled Reactor (TCR) has been used to improve power quality through firing angle control by parallel connection to the system in the form of ∆-connection. The inductances of three-phase TCR are assumed to be a same value, but a difference is generated in the inductance value of each phase in the manufacturing process. Due to the difference in threephase inductance, a conventional TCR control algorithm causes the imbalance of phase voltage. So, this paper proposes a method to solve the phase imbalance problem of TCR using a modified firing angle control scheme, and the performance of the proposed method was verified through Matlab simulation. KeywordsPower quality • Static var compensator • Thyristor controlled reactor List of Symbols V s (t) TCR voltage I s (t) TCR current α Firing angle β Compensated firing angle I n (α) TCR nth harmonic current according to α ω Angular frequency B TCR (α) TCR susceptance according to α L Inductance value
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.