The smartphone represents a promising tool for the assessment of cognitive function in clinical practice, but further research into the intra- and inter-rater reliability of observations is warranted.
Background: Reagent red blood cells (RBCs) are prepared from donated whole blood, resulting in various combinations of blood group antigens. This inconsistency can be resolved by producing RBCs with uniform antigen expression. Induced pluripotent stem cells (iPSCs) generated directly from mature cells constitute an unlimited source for RBC production. We aimed to produce erythroid cells from iPSCs for diagnostic purposes. We hypothesized that cultured erythroid cells express surface antigens that can be recognized by blood group antibodies.Methods: iPSCs were co-cultured with OP9 stromal cells to stimulate differentiation into the erythroid lineage. Cell differentiation was examined using microscopy and flow cytometry. Hemoglobin electrophoresis and oxygen-binding capacity testing were performed to verify that the cultured erythroid cells functioned normally. The agglutination reactions of the cultured erythroid cells to antibodies were investigated to confirm that the cells expressed blood group antigens.
Results:The generated iPSCs showed stemness characteristics and could differentiate into the erythroid lineage. As differentiation progressed, the proportion of nucleated RBCs increased. Hemoglobin electrophoresis revealed a sharp peak in the hemoglobin F region. The oxygen-binding capacity test results were similar between normal RBCs and cultured nucleated RBCs. ABO and Rh-Hr blood grouping confirmed similar antigen expression between the donor RBCs and cultured nucleated RBCs.
Conclusions:We generated blood group antigen-expressing nucleated RBCs from iPSCs co-cultured with OP9 cells that can be used for diagnostic purposes. iPSCs from rare blood group donors could serve as an unlimited source for reagent production.
Complex extracts of Ligularia stenocephala Matsum. & Koidz. (LSE) and Secale cereale L. sprout (SCSE) (TEES-10®) were prepared. The purposes of the study were to evaluate anti-inflammatory activities of TEES-10® in vitro and to observe resolution of gingivitis in human with oral administration of TEES-10®. The effects of TEES-10® on normal periodontal ligament (PDL) cell viability, lipopolysaccharide (LPS) induced PDL cell viability and the changes of inflammatory mediator expression were evaluated in vitro. In the clinical trial, 150 mg of TEES-10® powder containing capsule was administered twice daily to the test group, while the control group administered placebos in a total 100 participants with gingivitis. Probing depth (PD), bleeding on probing (BOP), clinical attachment loss, gingival index (GI) and plaque index (PI) were measured at baseline and 4 weeks. Administering TEES-10® showed significant increase in PDL cell viability compared to administering LSE or SCSE alone. In addition, treating TEES-10® to LPS induced PDL cell significantly increased PDL cell viability compared to control. TEES-10® suppressed expression of NF-κB, p-ERK, ERK, COX-2, c-Fos and p-STAT and promoted expression of PPARγ in LPS induced PDL cells. In the clinical trial, significant improvement of GI and BOP was observed in the test group at 4 weeks. In addition, the number of patients diagnosed with gingivitis was significantly reduced in the test group at 4 weeks. Salivary MMP-8 and MMP-9 was also significantly decreased compared to placebo group. Within the limitations of this study, the TEES-10® would have an anti-inflammatory potential clinically in the chronic gingivitis patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.