Despite the widespread use of techniques and tools for causal analysis, existing methodologies still fall short as they largely regard causal variables as independent elements, thereby failing to appreciate the significance of the interactions of causal variables. The prospect of inferring causal relationships from weaker structural assumptions compels for further research in this area. This study explores the effects of the interactions of variables in the context of causal analysis, and introduces new advancements to this area of research. In this study, we introduce a new approach for the causal complexity with the goal of making the solution set closer to deterministic by taking into consideration the underlying patterns embedded within a dataset; in particular, the interactions of causal variables. Our model follows the configurational approach, and as such, is able to account for the three major phenomena of conjunctural causation, equifinality, and causal asymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.