The study investigated the effects of chitosan (CS) combined with essential oils (EOs) in controlling the fungal contamination in peanut kernels. The antifungal activities of CS and EOs were evaluated against Aspergillus flavus and Penicillium citrinum. CS (2%, w/v in 1% v/v acetic acid) packaging films were formulated by incorporating different EOs (4%) separately, that is, thyme (TEOs), cinnamon (CEOs), and lemongrass (LEOs), respectively. CEOs showed lowest minimum inhibitory concentration (MIC) of 40 μl/ml against A. flavus and P. citrinum. CS films incorporated with CEOs showed high tensile strength and smooth morphology with less fissures in comparison to films incorporated with TEOs and LEOs. CEO‐based CS films showed complete inhibition of fungal growth at 28°C and 5°C for 24 days. The combination of CS and CEOs coating restricted the A. flavus and P. citrinum contamination to 9.8% and 13.4%, respectively, in artificially inoculated peanut kernels at 28°C for 14 days of storage. CS can be used in combination with EOs to control postharvest fungal contamination in peanuts. Practical applications CS are well known for the formulation of food packaging films; however, antifungal activity of CS is limited. This study explains the antifungal effects of CS and EOs. The combination of CS and EO can be used to reduce the concentration of EOs as antifungal agents which otherwise might affect the organoleptic attributes of food. The CS films incorporated with EOs are possible to use for shelf life extension and prevention of postharvest fungal contamination of agriculture commodities.
Berberis baluchistanica Ahrendt is a medicinal plant potentially known for the treatment of different diseases. The bioactive, antioxidant, nutritional components, and antimicrobial properties of crude ethanolic root extract of Berberis baluchistanica were evaluated in this study. The extract was analyzed for total phenolic, flavonoid, DPPH (2, 2-diphenyl-1-picryl-hydrazyl) scavenging ability, FRAP (ferric reducing antioxidant power), nutritional, and antimicrobial potentials. The alkaloids, tannins, cardiac glycosides, anthraquinones, coumarin, saponins, phenolics, flavonoids, steroids, and terpenoids were confirmed. The extract possessed DPPH radical inhibition with the IC50 of 1.125 mg/mL and FRAP % reduction activity with IC50 (0.912 mg/mL). Total phenolic 19.897 ± 4.8141 mg GAE/g and flavonoid 12.9876 ± 0.8388 mg QE/g contents were confirmed in the root. The extracts exhibit good antibacterial activity against a broad spectrum of food borne pathogens Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. The highest inhibitory activity was against Escherichia coli 23.30 ± 1.16 mm and lowest against Klebsiella pneumoniae 7 ± 0.01 mm . Furthermore, the presence of various phytochemical constituents (plant secondary metabolites) was also confirmed with gas chromatography and mass spectroscopy analysis. Results disclosed the occurrence of more than 70 compounds possessing various medicinal properties supporting the traditional uses of root of Berberis baluchistanica in various medical complications indigenously.
Propolis is a well-known resinous natural substance collected by honeybees (Apis mellifera L.) from plants exudations. Variations in chemical composition of propolis are due to different sources from which it is collected and change in climate and geographical location. In this study, different propolis samples were collected from different regions of Balochistan and examined for its chemical composition, total phenolics and total flavonoid contents, and antioxidant potential by using DPPH radical scavenging assay and antimicrobial activity. Bioactive components analysis revealed the presence of steroids, carbohydrates, flavonoids, coumarins, cardiac glycosides, quinones, anthraquinones, terpenoids, tannins, and phlobatannins at different levels. The total phenolics contents were ranged from 2.9343 ± 1.247 to 6.0216 ± 2.873 mg GAE g-1, and flavonoid contents were found to be 0.1546 ± 0.087 to 0.6586 ± 0.329 mg QE g-1, respectively. The antioxidant ability of each extract was analyzed by their concentration having 50% inhibition ( I C 50 ). The propolis sample P3 possessed lower I C 50 27.07 ± 0.73 mg mL−1 with higher % inhibition of DPPH radical, and P8 showed lower % inhibition by having I C 50 84.43 ± 2.07 mg mL−1. The antibacterial activity of all samples was analyzed against a wide group of bacteria including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia and propolis extract (P4) was highly active against Klebsiella pneumoniae with the maximum diameter of zone of inhibition 20.33 ± 1.52 mm, and propolis extract (P3) showed maximum zone of inhibition against Escherichia coli 19.06 ± 1.90 , while propolis extract (P2) was found less active with minimum diameter of zone of inhibition 7.46 ± 1.50 mm . The antifungal activity of extract was considered as active against the fungal species. Propolis extract (P3) showed 82% of zone of inhibition against Aspergillus Niger, and propolis extract (P1) was highly active against Aspergillus parasiticus with 80% of zone of inhibition. By comparing the vibration frequencies in wave numbers of the sample spectrograph acquired from an FTIR spectrophotometer, the functional groups present in the extracts were identified. The presence of seven elements (Fe, Zn, Mn, Ni, Pb, Cd, and Cr) was analyzed through atomic absorption spectrophotometer. The obtained concentrations were within the permissible ranges established by the World Health Organization. The GC-MS analysis revealed the presence of 80 different compounds belonged to different classes. The obtained results confirmed the imperative potential of propolis which can be used in various biological applications.
A study was conducted to determine the prevalence and drug resistance of Escherichia coli present in urinary tract infected patients and hospital drinking water. A total of eighty urine samples from clinically suspected patients and thirty tap water samples from hospital vicinity were collected and analyzed for the presence of E. coli. The isolates were preliminary identified based on morphological characteristics, biochemical test and further confirmed by polymerase chain reaction (PCR) using uidA primer. Isolates were subjected to antibiogram studies and analyzed for the presence of drug resistance (ESBL blaCTX-M-15, tetA, and TMP-SMX dfrA1) and pathogenicity associated pyelonephritis-associated pili (PAP) and Heat-labile (LT) toxin genes. Urine samples 19/80 (23.75%) and water samples 8/30 (26.7%) were found contaminated with E. coli. It was found that 12/19 (63%) bacterial isolates were extended spectrum beta-lactamase (ESBL) producers in clinical and 6/8 (75%) in water isolates whereas tetracycline resistance in clinical and water isolates was 11/19 (58%) and 6/8 (75%), respectively. The trimethoprim resistance gene was confirmed in 12/19 (63%) in clinical and 2/8 (25%) in water isolates. All the clinical and water isolates were found carrying pili PAP gene. It was concluded that the presence of drug resistant and pathogenic E. coli in clinical and water samples is extremely alarming for public health due to cross contamination and bacterial transfer from clinical samples to water and vice versa.
Medicinal plants are rich source of phytochemical constitutes and can be used to treat many human diseases. Infectious diseases have always been a major source of concern. Globally, the medicinal plant Achillea wilhelmsii locally known as Bohe Madran is extensively dispersed and widely used as traditional medicine. The aim of this present work is to investigate phytochemical constituents and antimicrobial, antioxidant, and anti-inflammatory properties of the whole plant ethanolic extract of Achillea santolinoides subsp. wilhelmsii (WEEAW) from Balochistan region. The total phenolic content was 14.81 ± 0.18 mg GAE/g of the extract whereas the total flavonoid content was 12.27 ± 0.12 mg QE/g of the extract. The antioxidant ability of the extract was analyzed by DPPH (2,2-diphenyl-1-picryl-hydrazyl) scavenging assay and FRAP (ferric reducing antioxidant power) assay in terms of concentration having 50% inhibition (IC50). Results showed that IC50 value for DPPH% inhibition was 0.367 ± 0.82 mg/mL while FRAP assay represented with IC50 value of 0.485 ± 1.26 mg/mL. In antileishmanial bioassay, the extract was analyzed against Leishmania major and showed good activity with IC50 value of 7.02 ± 0.83 mg/mL. Antibacterial assay revealed that Staphylococcus aureus was highly sensitive with the diameter of inhibition zone ( 21.61 ± 1.09 mm) followed by Salmonella typhi ( 17.32 ± 0.15 mm), Pseudomonas aeruginosa ( 16.41 ± 0.63 mm), and Escherichia coli ( 15.30 ± 1.17 mm) while Klebsiella pneumoniae showed minimum inhibition ( 14.13 ± 0.49 mm). Antifungal activity was tested against Aspergillus flavus with 89% of inhibition zone and 77% against Mucor mucedo and Aspergillus niger with 74% of inhibition zone. The anti-inflammatory assay was carried out by inhibiting protein denaturation, proteinase inhibitory activity, and heat-induced hemolysis. The IC50 value for protein denaturation was 6.67 ± 1.25 mg/mL, proteinase inhibitory with IC50 value of 4.12 ± 0.69 mg/mL, and heat-induced hemolysis assay with IC50 value 4.53 ± 0.82 mg/mL by comparing to the standard drug aspirin having IC50 value 1.85 ± 0.54 mg/mL. Results of the current work showed that whole plant ethanolic extract of Achillea wilhelmsii exhibited substantial anti-inflammatory action, thus can be utilized as a traditional treatment. Furthermore, overall finding of this research suggested that the antioxidant potential of the plant aids to prevent free radical damage and reduce the incidence of chronic disease. More research is needed to find out more active compounds present in the extract that are responsible for their pharmacological effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.