It has been widely accepted that mesenchymal stem cells (MSCs) can evade the immune surveillance of the recipient. However, emerging research cast doubt on whether MSCs are intrinsically immune-privileged. Previously, we observed that the transplantation of human MSCs (hMSCs) into the mouse parenchyma attracted a high infiltration of leukocytes into the injection tract. Thus, in order to reduce the immune responses generated by hMSCs, the aim of this study was to assess which immunosuppressant condition (dexamethasone only, tacrolimus only, or dexamethasone and tacrolimus together) would not only reduce the overall immune response but also enhance the persistence of MSCs engrafted into the caudate putamen of wild-type C57BL/6 mice. According to immunohistochemical analysis, compared to the hMSC only group, the administration of immunosuppressants (for all three conditions) reduced the infiltration of CD45-positive leukocytes and neutrophils at the site of injection. The highest hMSC persistence was detected from the group that received combinatorial administrations of dexamethasone and tacrolimus. Moreover, compared to the immunocompetent WT mouse, higher MSC engraftment was observed from the immunodeficient BALB/c mice. The results of this study support the use of immunosuppressants to tackle MSC-mediated immune responses and to possibly prolong the engraftment of transplanted MSCs.
Mesenchymal stem cells (MSCs) are a useful source for cell-based therapy of a variety of immune-mediated diseases, including neurodegenerative disorders. However, poor migration ability and survival rate of MSCs after brain transplantation hinder the therapeutic effects in the disease microenvironment. Therefore, we attempted to use a preconditioning strategy with pharmacological agents to improve the cell proliferation and migration of MSCs. In this study, we identified ethionamide via the screening of a drug library, which enhanced the proliferation of MSCs. Preconditioning with ethionamide promoted the proliferation of Wharton’s jelly-derived MSCs (WJ-MSCs) by activating phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)1/2 signaling. Preconditioning with ethionamide also enhanced the migration ability of MSCs by upregulating expression of genes associated with migration, such as C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine ligand 12 (CXCL12). Furthermore, preconditioning with ethionamide stimulated the secretion of paracrine factors, including neurotrophic and growth factors in MSCs. Compared to naïve MSCs, ethionamide-preconditioned MSCs (ETH-MSCs) were found to survive longer in the brain after transplantation. These results suggested that enhancing the biological process of MSCs induced by ethionamide preconditioning presents itself as a promising strategy for enhancing the effectiveness of MSCs-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.