Phenethyl isothiocyanate (PEITC), a constituent of edible cruciferous vegetables such as watercress, not only affords significant protection against chemically induced cancer in experimental rodents but also inhibits growth of human cancer cells by causing apoptotic and autophagic cell death. However, the underlying mechanism of PEITC-induced cell death is not fully understood. Using LNCaP and PC-3 human prostate cancer cells as a model, we demonstrate that the PEITC-induced cell death is initiated by
Celecoxib, the first US FDA-approved selective cyclooxygenase-2 (COX-2) inhibitor initially developed for the treatment of adult rheumatoid arthritis and osteoarthritis, was reported to reduce the polyp burden in patients with familial adenomatous polyposis. This specific COX-2 inhibitor also protects against experimentally induced carcinogenesis, but molecular mechanisms underlying its chemopreventive activities remain largely unresolved. In the present work, we found that celecoxib inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of COX-2 in female ICR mouse skin when applied topically 30 min prior to TPA as determined by both immunoblot and immunohistochemical analyses. In another study, celecoxib attenuated the DNA binding activity of activator protein 1 (AP-1) through suppression of c-Jun and c-Fos expression in TPA-treated mouse skin. In addition, celecoxib inhibited both the catalytic activity and phosphorylation of p38 mitogen-activated protein (MAP) kinase. In the same animal model, TPA treatment resulted in rapid activation via phosphorylation of extracellular signal-regulated protein kinase (ERK)1/2 and p38 MAP kinase, which are upstream of AP-1 in mouse skin. In order to clarify the roles of p38 and ERK in TPA-induced AP-1 activation, we utilized the pharmacologic inhibitors of these enzymes. The p38 inhibitor SB203580 blocked TPA-mediated AP-1 activation, while the MEK1/2 inhibitor U0126 was not inhibitory despite suppression of c-Fos expression in mouse skin. Furthermore, SB203580 markedly inhibited COX-2 expression induced by TPA. Taken together, these findings suggest that celecoxib down-regulates COX-2 by blocking activation of p38 MAP kinase and AP-1, which may represent molecular mechanisms underlying antitumor promoting effects of this drug on mouse skin tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.