Soluble chemically reduced graphene oxide (RGO)/poly(4-vinyl pyridine) (P4VP) assembly was attempted by totally noncovalent approach. Chemical reduction of P4VP/GO mixture by hydrazine produced soluble RGO/P4VP assembly with long term stability. Prepared RGO/P4VP assembly showed pH-dependent variation of optical transmittance. Transmittance of RGO/P4VP assembly solution at pH 2.0 dramatically increased more than 200% of transmittance of assembly at pH 6. This optical transmittance change was fully reversible. The detailed morphological features of assemble was evaluated by dynamic light scattering (DLS) and atomic force microscopy (AFM). It is estimated that RGO/P4VP assemblies were well separated each other at pH 6, enabling much higher optical absorption of RGO plates. At pH 2, protonation of pyridine ring occurs and this might hamper effective noncovalent interaction between RGO plate and protonated P4VP chains, forming bigger aggregates having less chance for optical absorption. This pHdependent optical modulation of RGO/P4VP assembly can be useful for the designing of pH-sensor, removable nanocatalyst, and targeted drug delivery, etc.
This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.