Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth’s magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.
Biohybrid micro/nanorobots that integrate biological entities with artificial nanomaterials have shown great potential in the field of biotechnology. However, commonly used physical hybridization approaches can lead to blockages and damage to biological interfaces, impeding the optimal exploitation of natural abilities. Here, we show that magnetically propelled plant biobots (MPBs), employing tomato-callus cultivation engineering in the presence of Fe3O4 nanoparticles (NPs), are capable of active movement and directional guidance under a transversal rotating magnetic field. The Fe3O4 NPs were transported through the cell growth media and then taken up into the plant tissue cells (PTCs), imparting the plant biobot with magnetic function. Moreover, Fe ions support the growth of callus cells, resulting in nanoparticle incorporation and enabling faster growth and structurally compact texture. The magnetic plant biobots demonstrated rapid and efficient removal of chlorpyrifos (approximately 80%), a hazardous nerve gas agent that causes severe acute toxicity, and recovery using an external magnetic field. The eco-friendly plant biobots described here demonstrate their potential in biomedical and environmental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.